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ABSTRACT

This work is concerned with predicting the forces acting on slender

bodies, namely hydrofoils and wedges, in rotational, supercavitating

flow. Methods are given for establishing not only qualitative but

quantitative measures of the effects of rotation in linearized, super-

cavitating flows.

A linearized theory is developed for steady, two-dimensional

flow under the assumption that the flow has a constant vorticity

throughout. The effects of gravity, viscosity, and surface tension

are neglected. Tulin's original closed-cavity model is employed. A

basic assumption of the theory is that the slender body-cavity combina-

tion causes only small perturbations in the velocity components of

the basic shear flow. The stream function of the rotational flow

satisfies Poisson's equation, which is a linear, inhomogeneous,

partial differential equation. By using a particular solution of this

equation, the linearized, rotational problem is reduced to a problem

involving Laplace's equation and harmonic perturbation velocities.

The boundary conditions for the perturbation velocities are established

from facts known about the body-cavity combination in the supercavitat-

ing shear flow. The resulting boundary value problem is solved by

the use of conformal mapping and singularities from thin airfoil

theory.

The theory is applied to asymmetric shear flow past wedges and

hydrofoils and to symmetric shear flow past wedges. Analytic expressions

are given for pressure, drag, lift, and moment coefficients as well as

cavity length, cavity area, and cavitation number relationships. The

presence of vorticity is shown to create significant changes in those

forces acting on the slender bodies and in the shape and size of the

trailing cavities. The results are summarized in tables, graphs, and

tabulated numerical calculations.
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1. INTRODUCTION

Cavitation occurs in a fluid flow as a consequence of local pressure

reduction, generally brought about by high local velocities. The devel-

opment of high-speed submarines, underwater missiles, and other vehicles,

together with the surface-piercing hydrofoil ship, has renewed interest

in the large scale effects of cavitation. The hydrofoil and wedge (or

strut) are practical parts of the total hydrodynamic system of most of

these vehicles. In many cases these parts have long and slender cross

sections with their greatest dimension nearly parallel to the flow direc-

tion. At sufficiently high speeds, common for present vehicles, these

slender bodies produce long, trailing, steady-state cavities as the result

of air ventilation or cavitation. The characteristics of these so-called

supercavitating flows about bodies are of particular interest to the de-

sign engineer. If the cavity pressure does not differ greatly from the

free-stream static pressure, the velocities near the body and cavity do

not differ greatly from the free-stream speed. It is possible, then, to

study the flow by means of a linearized theory which is based on the well-

known two-dimensional theory of thin airfoils.

Tulin [1)] appears to be the first to have used the linearized theory.

The work published since the appearance of Tulin's paper has been concerned

with both higher order linearized theory [23 and extensions of the first

order theory to include effects found in real flows, e.g., surface tension

[31 and gravity [4,51. The linearized theory has been applied to many

practical problems which were insoluble by more classical means. The

progress of this work up to 1960 is summarized in three papers, two by

Tulin [6,7] and one by Parkin [8].

In the linearized, two-dimensional theory the effects of viscosity

are usually neglected. The flow is assumed to be irrotational and the

velocity is assumed to be uniform for points far from the slender body.

However, since no fluid is completely irviscid all real flows are rota-

tional. Even when viscosity is neglected, the flow picture may sometimes

be best represented by a rotational flow.
1The numbers in brackets refer to the references listed at the end of the

work.
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Many rotational flows have already been studied empirically and ana-

lytically. For example, the only known exact solution for the problem of

finite wave motion is Gerstner's trochoidal wave which, while producing

a rotational flow, also satisfies exactly the constant pressure boundary

condition at the free surface. Also, two common physical flows, the

eye of a typhoon (a forced vortex) and uniform viscous open channel flow,

are rotational. Lamb [9] and Groen [10] have studied another rotational

flow - the propagation of small surface waves on a stratified fluid. The

rotational flows studied by Yih [11] are of particular interest because

his results show the importance of vorticity in reproducing physical ef-

fects. He considers the steady, rotational flow of an inviscid fluid in

a two-dimensional channel or a circular tube toward a sink. His solutions

show the unusual (for inviscid theory) features of separating streamlines

and corner eddies. Note that for a viscous fluid flowing in a channel or

pipe with an abrupt contraction, eddies occur in the corners formed by

that contraction, but such eddies are not predicted by an irrotational

analysis. In 1943, Tsien [12] recognized that there were many applications

in two-dimensional airfoil theory where irrotational flow conditions are

not satisfied. He states in his paper on airfoils in shear flow that, for

example, the large vertical velocity gradient near the ground can be ap-

proximated to the first order by a flow with a linear velocity distribu-

tion (a shear flow). Thus, according to Kronauer, ". . . the discussion

suggests that over a limited stream length the essential character of the

motion may be closely approximated by specifically neglecting the viscous

forces acting in that stream length, but by including (perhaps approxi-

mately) the effects of viscous forces up-stream [13]."

The present work may be regarded as an extension of both Tulin's

linearized theory for supercavitating flow and Tsien's method for rotational,

non-cavitating flow. Methods are given for establishing not only qualita-

tive but quantitative measures of the effects of rotation in linearized,

supercavitating flows. The effects of gravity and surface tension are spe-

cifically neglected. In the study a uniform, parallel, irrotational flow

is perturbed by a uniform shear flow - the simplest perturbation of the

parallel flow and a flow with constant vorticity. The vorticity is pre-

sumed to have come from some up-stream disturbance, e.g., a boundary layer

-2-



developing on the body of a vessel or test tunnel walls. Hydrofoils and

struts which lie in the slipstream or wake of other components would be

in such a vortex field.

The perturbed flow and the physical problems to be studied are shown in

Figure 1. The perturbed flow is also a uniform shear flow and, as such,

is characterized by a linear velocity distribution and a constant vorti-

city e throughout. The irrotational and rotational perturbed flows both

satisfy the equation of continuity; therefore the stream function * exists

in both. However, the velocity potential 0 can, of course, exist only

in the irrotational flow. Physically, the flow studied is two-dimensional,

and the fluid is of infinite extent. The flow is supposed to detach at

the leading and trailing edges of the hydrofoil and at both edges of the

blunt base of the symmetric wedge. Finally, it is assumed that the cavity

length, when measured from the leading edge of the body, is greater than

that of the solid body, i.e., full cavitation occurs.

The main paper considers rotational, supercavitating flow past wedges

and hydrofoils. The bodies chosen have been restricted to the slender

wedge and the flat-plate hydrofoil. The Appendixes include a discussion

of supercavitating flow past wedges in a transverse gravity field. The

solution to this problem complements the gravity flow solutions already

given by Parking [4] and Acosta [5] and arises directly from the solution

of the rotational flow past a wedge.

! -3-



2. TE LINEARIZED THEORY

In this section, a linearized theory is developed for two-dimensional,

supercavitating flows under the assumption that the flow has a constant

vorticity throughout. The effects of gravity and surface tension are

neglected. The flows considered are those past slender wedges and flat-

plate hydrofoils as shown in Figure 1. It is further assumed that the flow

is steady and that the fluid is both incompressible and inviscid. Because

of its simplicity and convenience, Tulin's original closed-cavity model

is employed in this work. It should be noted that 6ther linearized models

are available 114,15].

2.1. Notation and Boundary Conditions

Figure 2 shows two typical fully cavitated flows; the notation used

is introduced in the following discussion. The incompressible fluid has

a constant density p . The base flow which is a parallel, uniform shear

flow has been disturbed by the introduction of the slender body of unit

length. The unit length body is used without loss of generality, since

it is equivalent to normalizing the problem on the actual body length.

Although it is certainly disturbed in the neighborhood of the slender

body, the base flow is assumed to be undisturbed at infinity and is char-

acterized there by a constant vorticity G. The wedges are aligned symmet-

rically with their longitudinal center-lines parallel to the x-axis, and

hydrofoils are placed at an angle of attack a with respect to the x-axis.

The origin of the rectangular coordinates is at the leading edge of

the solid body. In terms of these coordinates, the velocity profile at

x = -- is U,- e y, with U representing the velocity at (-, 0). The

pressure at infinity is taken to be the undisturbed static pressure P".

The flow velocities U and V are in the x- and y-directions respectively.

The total velocity at any point in the fluid is q while the velocity on

the cavity surfaces is qc" The closed, trailing cavity which springs from

the solid body is characterized by a length A - greater than one, an ordi-

nate yc(x), and a uniform, constant pressure pc. It is presumed that

the cavity is filled with air or water vapor. The pressure pc is always

less than or equal to p,.

- -



In general, the only restriction imposed on the shape y0 (x) of the

slender bodies is that the flow over the body must satisfy a Brillouin-

Villat separation condition [16]. Under this condition the maximum velo-

city on the surface of the body must occur at the separation point; this

corresponds to requiring a fixed and known point of separation. In the

flows considered, this condition is satisfied.

In a two-dimensional flow, the vorticity component is

V - U
6x 2

and the rotation a) = /2. It is known that the flow has a constant vor-

ticity t = e at ( y). From the Helmholtz theorem on the permanence

of rotation, it follows that the vorticity e persists throughout the

fluid; thus,

W 21U(2.1)

Since the fluid is incompressible and the flow is steady, the continuity

equation

6U = 0 (2.2)

ax 7Y

must be satisfied throughout the fluid. In a rotational flow the stream

function * = f (x,y) exists and may be defined so that

The function * satisfies equation (2.2) identically, and Poisson's

equation

= = (2.4i)
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is produced when * is introduced into equation (2.1).

The Bernoulli equation for rotational flow is found by

integration of the Euler equations. They are, in this case,

U + V b - 1

Mv zy 7

U T+ V TY -A

Following rearrangement, these equations become

Integration gives the Bernoulli equation for steady two-dimensional

flow with constant vorticity (or rotation),

p + 2pq - = constant. (2.5)

Poisson's equation (2.4) is a linear, inhomogeneous, partial dif-

ferential equation. Therefore, by the use of superposition, its

solution can be written as * = *H + *P, with V2WH = 0 and V2 *p = .

The stream function *H represents a new harmonic flow; ip is a

particular solution of equation (2.4). From equation (2.3), then,

U(x,y) = uH,y) + Up(xy) ) (2.6)

V(x,y) = v11(x,y) + Vp(xy) •

2
If one lets p= Vp 6 as desired, and

p= " Ey,

P =0.
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Thus,

U = UH-E

V H.

It is evident that any problem which requires a solution for U and V
can be reduced to an equivalent problem for the harmonic velocity

components U and VH.

With the flow conditions at infinity known, it remains to
establish the boundary conditions on the solid body and cavity walls.
These conditions and a compatible boundary value problem are estab-

lished in terms of a linearized theory. The basic assumption of such

a theory is that a slender body-cavity system causes only small per-
turbations in the velocity components of the basic shear flow. This

assumption does break down in the neighborhood of singular points.

But, as Tulin [6] notes, the effect of this breakdown is usually

restricted to the area of the singular points, and the overall char-

acteristics of the flow are often well reproduced by linearized

solutions. The flow pattern is a combination of parallel, uniform

shear flow and, superposed on this, small velocity perturbations.

Since it is desired to formulate eventually an harmonic boundary value
problem, the flow velocities are written in terms of the harmonic per-
turbation velocities (ulv) in the x- and y- directions respectively.

From equation (2.6)

U=U + u- (2.6a)

V= v

in the linearized flow.
In a linearized theory for irrotational supercavitating flow, it

is assumed that the perturbation velocities (u, v), the attack (or
wedge semi-) angle a,, the body shape (or camber) y 0 (x), and the

cavity ordinate Y (x) are small. First order terms in these quanti-

ties are retained, but second and high order terms are neglected. The

! -7-



force coefficients obtained by such a linearized theory are generally

correct only to the first order. In the present rotational development,

terms of the form Ey arise in the boundary conditions for the per-

turbation velocities; in order to preserve the first order smallness of

these velocities, it is necessary to restrict the relative vorticity

c/U to a size of the order of one. In this case, then, the flow

reversal, which occurs in a uniform shear flow at y as UJ, does not

occur near the body-cavity combination, whose ordinates are usually very

small compared to one. Finally, from the Cauchy-Riemann equations as
2

applied to the harmonic perturbation velocities, it is seen that these

velocities change very slowly in space when the streamline slopes and

curvatures are small [1]. For this reason, the linearized boundary

conditions may be applied on the x-axis instead of the body-cavity
surfaces. These boundary conditions for the harmonic perturbation
velocities are established from facts known about the body-cavity

system in the shear flow.

In order to formulate the boundary conditions on the cavity., it
is first necessary to define a cavitation number. The cavitation

number is the parameter which relates the pressure conditions in the
fluid stream to those in the cavity. It indicates the degree of

cavitation; as the cavitation number decreases, the cavity size

increases. Recalling that * = * H + £y2 /2, one has from equation

(2.5), to the first order in G,

P2Pc 6+ 2Y2  q 2
+ - " 1 -- constant.

The velocity U and pressure p are taken at (- , 0), while c

and qe are taken on the cavity streamline. In general, the extension

of the cavity streamline does not coincide with the x-axis except at

the leading edge of the slender body. The stream function *H represents

the difference between the harmonic stream function value on the x-axis

and its value on the up-stream extension of the cavity streamline.

2See equations (2.13).
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Thus, = -Uy, where Y. is the ordinate of the cavity streamline

at x = -w. In the case of a uniform flow about a cylinder with

circulation [17, -yG is infinite. However, in the present cases

of a linearized uniform shear flow past slender wedges and hydrofoils,

the value of y. is not known a priori. It follows that in these

rotational flows the cavitation number a, defined in the usual sense

as

0' = (2.7)

cannot be used directly since

2 2Ey E 2c 00 YeO

and y is unknown. Therefore, it is convenient to define a rotation-

al cavitation number E. Let E be defined so that

2

= -1;(2.7a)

then, in the following treatment most terms will retain the same form

as their irrotational counterparts. When either e e 0 or the flow

is symmetric E M o;3 otherwise,

2eyoo E.-- + -7-- - •

This relationship provides a means for relating the pressure difference

and flow velocities in experimental programs. The rotational cavitation

number may be determined either by measuring the up-stream and cavity

velocities directly or by first measuring the pressure difference, up-

stream velocity, and vorticity and then measuring y , the ordinate

3For a symmetric shear flow about a symmetric slender body, the x-axis
and the bifurcated cavity streamline do coincide for x 0 and
equation (2.7) holds. In this case, a E Z. See Section 3.2 for
discussion of such symmetric flow.
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of the stagation streamline.

On the cavity walls, from equation (2.5), the velocity qc is

constant because Pc is constant for a given vorticity e. Writing

qc in terms of the perturbation velocities and introducing the result

into equation (2.7a) yields

2u 2 eYc 1 2 v2 22 (2.7b)

00 W

The cavity boundary condition is obtained by neglecting terms of order

greater than one in equation (2.7b), thus producing

U E
2 = u(x,O) - ey0 (x), a < x < A, (2.8)

which is applied on the x-axis. When equation (2.8) is applied to

the upper cavity surface in the flow past a hydrofoil, the quantity a

equals zero; otherwise, a is equal to one for flows past both wedges

and hydrofoils. If one lets

U = U + u-Ey
C W Y

2 - 2
on the cavity, then qc + v. Thus, from equation (2.7b), to the

first order,

uc = U (1 +E/2). (2.9)

From equation (2.7a) one obtains

Uc ft qc = U Go

In the present work equation (2.9), which is consistent with the

linearization, is used; however, it should be noted that

1 - 0 "
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It was noted previously that the harmonic perturbation velocities

change very slowly when the streamlines have small slope and curvature.

For this reason, since the cavity is assumed to be long and slender, the

variations in the quantity eyc  in equation (2.8) are certainly small

over most of the cavity. It is reasonable, then, to replace eyc with

an average value t 1 on the upper and lower cavity surfaces respective-

ly. This averaging technique was introduced by Parkin [4] in dealing

with a linearized theory for flow past a hydrofoil in a transverse

gravity field. The averaged quantity Z/U is non-dimensional. It
must be treated as part of the problem's solution and is used as a

basic parameter when the results cannot be determined directly as a

function of e/U. Note that the relative vorticity e/U, which has

the dimensions (I/LENC7M), is independent of the length of the solid

body and truly measures the relative size of the small constant vor-

ticity and the up-stream velocity, i.e., the rate of change of velocity

with y at infinity. Equation (2.8) now becomes

u(x,0) - U E:/2 + Z, a < x < So y > 01
and u(x,o) -= U12 - Z, 1 < x < J, y <o .J (2.8a)

These equations are applied on the upper and lower cavity surfaces

respectively.

The total velocity on the solid body must be tangent to the

surface of the body; hence, in terms of the perturbation velocities,

d yo(x) v(x,Yo )

= a U- 1-70+ ux,yo )

The denominator may be written as

1 y- eyo + u(zIYo) " mU + ,,

with - (U(X, yo) - U(Xyc) - eyo(x) + eyc(x)). From the basic

asszuptions of the theory, Tj < < Uc. Since
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dy(x) v

dx u0( 1 +

the denominator may be expanded in a binomial series. The result is

dYo(X) v - +0
0yO V (l n 0[( )2])T U T

After linearization, the boundary condition is

dy°(Wx) x- C 1 O<x<l, (2.10)

and it is applied on the x-axis. Furthermore, this equation is also

valid on the cavity surfaces and gives the surface slope at any point

along the x-axis. In the cases of slender wedges or hydrofoils,

- -(x) = tan a .

Equation (2.10) becomes

v(x,O) = +a Uc, 0 <X < 1 (2.10a)

on the upper and lower wedge surfaces respectively, and

v(xO) =-a U, < x < (2.10a)

on the solid surface of the hydrofoil.

I - 12 -



Examination of equations (2.8a) and (2.10) shows that the result

acquired in equation (2.10) provides automatically for smooth separation.

This condition may be thought of as equivalent to the Kutta condition in

airfoil theory in that both conditions serve to single out a unique

solution to the flow boundary value problem.

The condition of cavity closure is characteristic of Tulin's model

of the finite cavity. If the rotational and new irrotational flows

are studied, it is seen that the subtracted portion *, of the

rotational flow makes no net contribution to the flow within the

cavity-body shape. Hence, the cavity closure condition must hold in

either flow, i.e., the net strength of sources within the body-cavity

system must be zero.

Finally, since the base flow is undisturbed at infinity, the per-

turbation velocities (ulv) approach zero at great distances from the

body-cavity system. In summary, the conditions to be imposed are:

U E

u = + I on the cavity2 -
v = + a U on the body

- C

(u,v) -)0 at infinity

The cavity is closed.

The flow must separate smoothly from the solid body.

These conditions are sufficient to determine the harmonic perturbation

velocities (Uv).

2.2. Methods of Solution

Two methods of solution and their corresponding boundary value

problems are given. The first is that method used originally by Tulin [i.

This method makes use of the velocity potential of a source distribution

and singular integral equation theory. The second method is based on

conformal mapping of the physical plane onto the exterior of the unit

-13-



circle. This latter method, which has been used by .others [I, 5, 8, 18],

has proven most convenient for the present work; however, the former

method is outlined here for completeness and comparison.

The first method is given here for a symmetric flow such as that

found in Section 3.2 and Figure 4. The solution for the mathematical

problem arising from the given conditions on (uv) is found in terms of

the velocity potential which exists for the harmonic flow represented

by (u,v) and *,. The potential of a distribution of sources along

the x-axis between the leading edge of the body and the close of the

cavity is

O(x,y) - i() In r dt . (2.1l)

The distribution function g(t) represents the source strength and

r 2 =(x 2 + y 2

This distribution produces a function with the required symetry.

The velocities are designated by

u(xY) - r

V~xj~) -~ t) dt(2.12)

The given boundary conditions on (uv) are applied on the x-axis, and

one must pass to the limit y -P0 in these equations. Taking the

Cauchy principal value of the integrals when required and using the

substitution tan t = (x - t)/y, one obtains

u(xo) - (2.12a)

v(x,O) -, (x) /2

Incorporating equations (2.12a) into the conditions given at the end

of Section 2.1 produces the following complete boundary value problem:
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To find g(x) such that

d 1 dyo(t )

a. *u UE; +E 42Uca#-r dt - f X, 1 < x < £

b. p(x)a2U 0o 0( < <1.

c. The cavity is closed; hence

g (x)dx -. J2U. -.- -. Cyo(0).

d. The sparxation is smoth; hence (x) finite as

Since the flow is symetric, it is sufficient to consider only y > 0.

From equation (A-5) of Appendix A, one has

-(x) 
f()d .

Once 4(x) is known, the cavity shape and pressure force coefficients

can be calculated by using equations (2.12a) and the definitions

given in Section 2.3.

The second method of solution also makes use of the new harmonic

flow. In this case, it is convenient to work with complex variables.

Following substitution of (u,v) and into the vorticity equation

(2.1) and continuity equation (2.2) they reduce to

and (2.;13):

respectively. In terms of the complex variable z - x + iy, the total

complex velocity may be defined as

w(s) - U + e(z - ) (),

I -15 -



with w(z), the complex perturbation velocity, given by w(z) - u - iv.

Equations (2.13) are seen to be the Cauchy-Riemann equations for w(z);

from these equations and the continuity of the flow, it follows that

w(z) is analytic outside the cavity-body system. Also, since (ulv) -) 0

at infinity, w(z) must vanish at infinity.

The boundary conditions are applied along a slit in the z-plane

corresponding to the x-axis where 0 < z < 1 and z is real. The

complex velocity w(z) is analytic in the region exterior to the slit

in the z-plane. The complex z-plane and typical boundary conditions

are shown in Figure 3. The mathematical problem is to ascertain an

analytic function w(z) subject to boundary conditions on both its real

and imaginary parts, as given at the end of Section 2.1.

The specific problems for the wedge and hydrofoil are tabulated

in Table 1. Note that in this table, conditions e. and f. are

equivalent to requiring that

Dn(w) - 0(p.

Real (w) = 0( , z -.

The conditions listed in Table 1 are sufficient to determine w(z). It

is expected that the complex perturbation velocity w(z) will exhibit

singular behavior at those points on the slit where large changes

occur in the magnitude and direction of the velocity. These large

changes occur at the leading edge of the solid body and at the closure

of the cavity. Condition g. in Table 1 is imposed to restrict

the magnitude of the singular behavior so that the pressure distribu-

tion, which is proportional to Re (w), remains integrable.

The determination of w(z) is accomplished by a method of conformal

mapping which permits the use of results already known in airfoil

theory. In accordance with Wu [18] and Parkin [4], the z-plane

is mapped conformally by a succession of transformations onto the

C-plane. The complex velocity w is held invariant at corresponding

points of the mappings. The transformations are listed in Table 2,

and the various mapped planes are shown in Figures 3 and 5, in which

corresponding regions and boundary values are shown.
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It is seen that the boundary value problem for w may be solved

in any of the transformed planes. The C-plane is used directly

for wedges, while the problem is solved in the Q-plane for hydrofoils.
In either case, however, the singular functions which are the basis

of the problem's solution are established in the C-plane. From
Figures 3 and 5, it is clear that the real parts of the singular

functions must satisfy particular conditions on the real axis, while

the imaginary parts must satisfy other conditions on the unit circle.

In addition, the limiting conditions on w as z 4- must be

met at the corresponding points in the C-plane or Q-plane. A

complete solution w(C) is formed from a series of singular complex

functions. These functions, familiar in airfoil theory, and their

properties are listed in Table 3. The strength of the singularities is

limited by the pressure integrability condition previously noted.

The singularities are not of higher order than simple poles at points

on the slit. Figure 3 shows that the leading edge of the hydrofoil

maps onto C - 1, the leading edge of the wedge onto C - i, and the

cavity closure onto C - s. These are the centers of the singular

behavior in the linearized theory; hence, most of the wi(C) in

Table 3 are singular at these points. These functions in Table 3 have

already been extensively used in linearized cavity theory and are

discussed in some detail by Parkin [4, 8] and wu [18, 19].

The solution w(C) to a particular problem is given in terms of
the singular functions Vi() by

w() . Kiwi + X + IN,

i
where the constants 1K, M, and N are assumed to be real. These

constants are then determined by the conditions given in Table 1,

since the w(C) formed is already analytic off the slit. In addition

to establishing the constants, the given conditions also produce a

relationship between the cavitation number E and the cavity length £,
with i and a as parameters. Following determination of w, the

cavity shape and pressure force coefficients can be found by using

equation (2.10) and the definitions given in the following part of

this section.
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2.3. Calculation of Results

The results of the linearized theory include the length-cavitation

number ratio (already found in Section 2.2), the cavity shape, and the

pressure force coefficients for lift (CL), drag (CD), and moment

(CMO). From equation (2.10), the cavity shape is given by
x

yc(X) vdx + y0 (a), a < x , (2.14)

For wedges, a = 1 on both surfaces, while y0 (1) a + on the upper

and lower surfaces respectively. For hydrofoils, a = 0 and y0 (O) = 0

on the upper cavity surface; a = 1 with y0 (1) = - a on the lover

surface. Also, using equation (2.10), one may calculate the body-

cavity area S, which is

S (y+ - y.)dx.

This equation may be integrated by parts and, since the cavity must

close, i.e dy = 0, one has

B x vxdA. (2.15)

The contour integral B+C follows a closed, counter-clockwise path

over the surfaces of the body-cavity combination. Recalling that

v = -Ira w(z), one may write the previous equations so that

yc(x) = - L I wz + yo(a) (2.14a)

and S W um wzdz, (2.15a)

where x = z on the slit in the complex z-plane. The latter result

was first given by Geurst and Timmn [20].

Calculation of the pressure force coefficients is based on the

pressure coefficient Op, which is given by
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o - PC (2.16)

In each flow the solid body and cavity surfaces lie on the same stream-

line. Thus, the Bernoulli equation (2.5) yields

S2 2/ 2.P"- PC -jpc (l -%1%).

The term on the right in this equation may be simplified by lineariza-
2.U+v2 .U+v2 2tion. Writing q C a+v2 nd = + v2 , one has qc  U to the

first order and

2 222

1 - q/q - -2(% - )1 - (%- )1

- -2(U - ,c)/U - (U - U)21U
0 C 0 C C

- -2(Uo - vc) lUG

after linearization. The pressure coefficient may now be written as

C - - (U -_ )/,

with U0  and Uc being the x-components of velocity on the solid

body and cavity surfaces respectively. From equation (2.6a),

U0 = u(x,yo ) - + U, and from equation (2.9) U = U + UZ/2.

Thus,

C 2 - (1 + .)(U(xP YO) - y ~/.(2.1 6a)

There has been considerable discussion [Ii 8, 19] regarding the
appropriate method of defining and linearizing the pressure coefficient

so as not to lose any first order terms. The above result is consistent

with that given by Wu CL9 ], in that the flow is continuous and C = 0
P

at the trailing edges of the solid body for C = 0. As Parkin has
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pointed out [14], however, in order to be consistent with the averaging

approximation when e 4 0 and to have a continuous velocity at the

trailing edge, one must take leyl III on the solid body for x = 1.

On a wedge, y = + c; so, to the order of the approximation,

ey= + x

on the upper and lower wedge surfaces respectively. On a hydrofoil,

y = - cXC so

y= -x

on the foil to the order of the averaging approximation. The final

result for the pressure coefficient is given in Table 4. In addition,

this table gives the remaining coefficients in terms of Cp. Note

that the drag coefficient in the wedge flows is based on the base

area of the wedge; the remaining coefficients use the unit chord of

the body as a characteristic length. The method used to calculate

these force coefficients follows that used by Wu [18] on wedges

and Parkin (4] on the hydrofoil.

Finally, a rational means for evaluating the average parameter

Z/U must be determined. From the manner in which 1/U arises,

it is mathematically reasonable to let

=(u) (cavity area)/2(, - 1),

i.e., !/U equals the average value of Glycl over the cavity. On

the other hand, the vorticity 6 creates an additional circulation

in the flow, and it is this important flow property which characterizes

the influence of the vorticity. (This result holds also in the case

of a supercavitating flow past a hydrofoil in a transverse gravity

field [4]). Thus, /Um is chosen so that the actual circulation r
is equal to the circulation T based on the constant perturbation

velocities associated with I/U.
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The circulation r is defined as

where q is the total vector velocity and Ts is the elemental

vector path length on the closed contour where I is measured. Since

the perturbation velocities are defined in the harmonic rather than

the physical z-plane, it is convenient to balance r and P in

the harmonic plane. From equations (2.6) and (2.6a), one finds that

U = U + u- (y implies that UH a U + u and V = v implies that

VH = v. Therefore, on the cavity where U f Uc.

=U c + ey

and on the solid bodies,

UH =U + u

The actual circulation r and Iq are given to the first order in

Table 5. Note that, to the first order on the solid bodies, the

circulation integral

f[(U + u) dx + vd]-f + u)dx.
body, body

Observe also that in the expression for !/U in Table 5, the terms in

the large parenthesis are precisely equal to the cavity area for the

wedge flow and equal to the cavity area less the triangular area

between the hydrofoil and the x-axis for the hydrofoil flow. Thus,

the matching of circulations at once provides a rigorous and intuitively

satisfying result.
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3. APP0ATIONS OF TEE LMMAED TBMY

In this section the linearized theory developed in Section 2 is

applied to three problems: the first two are the supercavitating,

asynmetric and symmetric shear flows past slender wedges; the third

concerns a supercavitating, uniform shear flow past a flat-plate

hydrofoil. The solutions to al. three problems are found by means of

conformal mapping, using the singularities shown in Table 3.

3.1. Asymmetric Flow Past a Wedge

This first flow is a supercavitating, uniform shear flow past

a wedge of unit length. The asymmetric, undisturbed velocity

profile of the flow is shown in Figure 1 (solid line profile). The

notation used is that given in Section 2 and Figure 2a.

3.1.1. Solution of the boundary value problem

The mapping of the physical z-plane and the appropriate boundary
conditions are indicated in Figure 3a. From the conformal trans-

formations in Table 2, it is easily shown [5] that

z 4( 1) 2 (3.1)

where C1  and C2  are the roots of

C + 2C 2 (21 - 1) + I= (C2 _C) (C2 ._C).

These roots are

C1 - i ( %f+ I-i) (3.2)

C2  i ( 4r- 4'th

It is seen from Figure 3a that C1  is outside the unit circle and
represents the point z - m, while ; is inside the unit circle and,

hence, does not represent a point of the physical plane.
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The complete boundary value problem for this wedge flow is given

in Table 1, which was developed in Section 2. By using the singular

functions listed in Table 3, it is possible to construct a solution

function w(t). A comparison of the boundary conditions and available

singularities shows that w(t) should have the form

w() -= .:- + (-) + B

+ iCiSnt + iD (3.3)

The function i(C - l/C) is selected to provide the proper closure

singularity, and the term L(C2 - l)/(2 + 1) is used to satisfy
the condition that w(z) -* 0 as z * w. The remaining functions are

needed to fulfill the boundary conditions (a) through (d) in Table 1.

The real constants B and C are determined by considering w(c) on

the real axis of the C-plane. Equating the values of w(C) and the

boundary conditions there, one has

U E

v(C) - B + "I C > 0

w() - B - cB I - - E, C < 0.

Therefore, B U %E/2 + I and C 2Ift. Equation (3.3) can now

be rewritten as

w(C)= i + i " - n + i 6AnC

+ iA(C - 1) + LDIC . (3-3a)
2 +1

In this form w() satisfies the differential equation and conditions

(a), (b), (c), (d), (g), and (h) of the bouary value problem. The

remaining conditions will serve to establish A and D and to determine

a unique relation between A and E for given values of T and a.
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3.1.2. Results

As Wu has pointed out [18], much can be learned by expanding w(z)
in negative powers of z as z 4 o. The result is an infinite series

of the form

w(z)-a 0 +ib + + a 2 + (3.4)
z '\Z)

From boundary conditions (e) and (f), one has

a =b O aa,=O.

As z -Io 1; hence, using equations (3.1) and (3.2), C can

be expanded in descending powers of z. Acosta (5] has shown that

one obtains

2Z 8 2 "

(3.5)
This result is now introduced into equation (3.3a) and the combination

is simplified. This process is accomplished in several steps. First,

from Acosta's work:

%E 2c CCE~
..+_In + + I ). ++i c r An1

z [ A '- A(A- 1) ri + (i i)

z

A~ (1-1) (31 +1) +0].o~

Second,

11 2 1 2 i 1  [&Cl + An (1.+ Q),

with Q.M/z + N/Z2 + 0(1/z3), M ( 1 I"/2, and N.

(21 + 1 + 4Ji( - 1)7)/8. Following a series expansion on the small
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parameter Q, one has

Finally,

2 2 (1 + q)2

+ 2 (1 + q)2+2

with Q as before. Letting (22 - 1 + 2) T, on

obtains

0 C2 iD(1 + T) + T(2q + Q 2

C2 +1 (1- T) -T(2Q + )

and by setting

b (1 + T)/ (1 -T)/, and l= 2Q +Q

he has

0 2 -+ /b

C + 1 + I

for j <<(ab). By expanding the denominator of this result,

neglecting terms of order (l/z3 ), and simplifying the result, one

obtains finally

C 2 -- i . -+ - .AC 2 + + (1 - T)2 * + (1 -T)2'?

+ 2T (1 + ) }+ 0

(lT)' Q1%'

The series expansion of i(z) in descending powers of z is a

combination of these results, and
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+ (A( - i) 3+ i T 4(1 -) ()

+ +

+ 0 s(3.6)

Since it is required that a, = bo  0 0, it follows from equation (3.6)

that

A - CcU /1(2-1) (3.7a)

and

2 T ij-~n(.f J, -TT)+. (3.7b)

Using these results and the further requirement that ao - 0, one has

Uj Clo L .. 1 2 J7 o"0
- --Y \ a -. , /

Because Uc  U(l + Z/2), the above relation can be simplified

to give

-CI 2
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This equation relates the cavitation number E, the cavity length A,

and the wedge semi-angle a. It is seen to be the same result as that

obtained by Tulin E1] and Wu (181 for an irrotational wedge flow.

In this case the rotationality of the flow has no first order effect

on the cavity length. This same conclusion can be reached by purely

physical reasoning as follows: if a first order length effect enters

as K, then changing the sign of I reverses the first order effect

but simply inverts the flow field. Hence, a contradiction would result

from the presence of a first order length effect. This same reasoning

applies to first-order changes in the drag and cavity area, but not to

changes in the other pressure force coefficients or the cavity shape.

As a result of the above information, the complex perturbation

velocity v(z) may now be written as

,,,V-( Z ) /i' + 4T +
z &( +" -7-21rll4Tjf ( 17_1 1!i auaA3/

+ 4(.~i~ 21,+l) [1+ 1- + if1i(T)j

+ 0- (-T (3-9)

The remaining calculations are based on equations (3.3a) and (3.9).

First, the cavity area and shape are calculated. From Section

2.3., the body-cavity area is

s - l-w(z)zdz. (2.15&)
c 3'

The cavity area Ac is

Ac S - , (3.10)

where it is seen that a is the area of the vedge. Because the

complex velocity w(z) is analytic off the slit,
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Ow(z)zdz - V(z) zdz,

B+C T

where T is a circle of large radius (IzI * ) surrounding the slit.

The slit and contour path lines are plotted in Figure 6. Applying

the theory of residues, one has

Imow(z)zdz - 21

T

and from equation (3.9)

a2 .

Thus,

s. 1312 0 -. a)/.

and

A, = a(13/2 - 1). (3. b)

To find the cavity shape, one rewrites equation (2.1a) as

Ct

on the upper cavity surface, and

y a -a - -l

on the lower surface. On the cavity surfaces (see Figure 3a), both C

and z are real and x = z. The cavity ordinate yc is related to

the cavity abscissa x by determining x as a function of the para-

meter t. The derivative dz/d9 is found by differentiating equation

(3.1), and
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dz . - 1)a(4 - 1) (3.12)" (C2 +T )2 (C4 + ])20
1 2 1 2The relations C1 C2 l,CE1 = -T, and C = -R=I-[2A -l1- 2T ]

have been used to achieve this result. When C is real, the imaginary

part of w(C) in equation (3.3a) becomes

ImN ()J Mc .~tan j nICI+A C-1 C2+

Combining the above results and using equations (3.7), one has on
the cavity surfaces the following:

a. on the upper surface, t > 1t

t7
Y 4cx 8*(A-l) [!cT)n(TY (C-K~) 2~,~A -1±

+ Ire An 4a~ tan-l1  VC 4-1 (3-13a)

- J (C2+T)2(C2~

b. on the lower surface, t < -1,

1 146 1-T In (W + 2

yc -a + 81(1-1 (C - ) - ( •C +
4a -1 . (3.13b)

T (C+T)2(C2+R)2

c. from equation (3.1), for Itl > 1,

x. 40 - 1) t2 1]31c

(t2+T) (t +R)J

Next, the pressure force coefficients are determined. The

pressure coefficient C was developed in Section 2.3 and is given
p
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explicitly in Table 4; the other coefficients are given in terms of

C From Table 4,
Pi

Cp= (2+E_;_ (3.14).

On the wedge surfaces, = e The upper surface corresponds to the
plus sign in the C p expression and 0 < e < 11/2, while the lower

surface corresponds to the minus sign and 11/2 < e < 11. On the wedge,

0 < x < 1. The combination of equations (3.3a) and (3.7) and the

introduction of C = e gives the complex velocity on the wedge

e -. Eie 
+ ie -il

2~1 -T £n4 +T i -(

+ i aU -- + 2o)
00e + 1

Simplifying this result and taking the real part produces

U 2 fa sin e- 7-U" j = (4+ jJ - ) tan e
Co a

+~- 2 l~e -(+ )Cjlj+ sin 8

From the wedge flow transformations listed in Table 2,

1 ( 1)2 z ( 1) z

Since x - Re (z) and a ie on the wedge, one obtains, after

some simplification,

£ cos e • (3.15)
X Col

A- sin o
The above results are now introduced into equation (3.14) and
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T 20 (1-T)Cos 2 l+ U - 1 + M+)tan 0 . An (I+ X1'-"")+
. - TsinT

(3.16)

The positive sign and 0 < 9 < 11/2 are used on the upper wedge surface

and the negative sign and 11/2 < e < 11 on the lower surface. Equations

(3.15) and (3.16) then give the pressure coefficient Cp as a function

of x on the wedge surfaces.

The drag coefficient based on the base width of the wedge is, from

Table 41,

CD C dy (3.17)

The contour integral W follows a closed, counter-clockwise path on

the wedge surfaces. If equation (3.14) is introduced into (3.17), and

the relationships dy . - dx and 2uv - - I 2 ) are used, then
Uc

since dx = dz on the slit. The first quantity in the brackets above

can be written in terms of the contour integration paths shown in

Figure 6 because w is analytic off the slit. Hence,

t w2 dz -tw2dz _fw 2 dz.

The path T is a large radius circle, as before; the path C around

the cavity on the slit consists of the cavity walls plus a small circle e

(radius r -0) which surrounds the point z A A. On T, w(z) is of

the form

-31-



w~) b~+a 2 + ib 2w(-.) -z + 2 + 0(13),
z z

so that

w 2(z) = + - 1

z 2 z

Thus, by the theory of residues,

w2dz - 0.

T

The integral over the cavity is given by

Im V2dz -2 I (ey + U/2) U dy
C I

+ f (eye + EE/2) U  + Im ,

where Im w = - 2uv on the slit, and JT is the integral over e.

The integrals S over the slit are taken on the lower and upper cavity

surfaces respectively as indicated by the subscript on the integrand.

On the cavity Eyc  =_+, on the wedge ±x = y0 -ly/a. It

follows from the definition of a closed contour integral that

aolydy -O and 0$± dy -O.

W S

Thus, equation (3.17a) may be simplified to

CD - + - j "('J~TT ). (3. )

In order to evaluate this result, w(z) must be expanded as z -
Taking equation (3.1) and letting z £ gives
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.z

The expansion of w(z) about z = £ and evaluation of the resulting

integrals over the e path are accomplished in Appendix B. There it

is found that

J 4 w 2d,- 8 IA2 i( -1).

e

Introducing this result and the value for A given in equation (307a)

into equation (3.17b) above gives the drag coefficient

cD w a(2 E . (3.18)

As expected, this result is precisely that given by Tulin Ell and Wu [183

for the irrotational flow about a wedge, and the rotation has no first

order effect on the drag.

By utilizing the previously determined results of Table 14, the

lift coefficient CL is found to be

CL W
w w

The real part of v(z)dz is equal to udi on the vedge and

W 0

so

VCLin (2+ E) Re -dz- (2+ E) (3.19)
w a

From equation (3.9) and the theory of residues

f vdz 2M 2U(ib1 ),

T
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since &aL =0, and b + 4T~3 [n (- rj jj7

Recalling that w is analytic off the slit, one may write

0wdz = vdz -. wdz.

W T C

Then,

Re wdz [ 2'tA l[ + A-- n (VT'+ IT713] - Reovdz

W c
and

Reovdz = Re ovdz + Reovdz.

C S e

The contour integral S follows a closed path over that part of the
slit on the x-axis which corresponds to the cavity but excludes the

point z=t. Upon using the fact that Re w =u and u = UN/2 +
on the cavity, it is found that

Re 0 dz = udx f fI dx +J 2(

S S 1 £
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Furthermore, from Appendix B, one sees that

Ref vdz = 0.

e

Using these resulte, equation (3.19) can be put into the form

C -. 2 (2 + E)(L)[IT-)[ 1 + ' - Jn W- + X "1) "

(3.20)

The moment coefficient about the nose of the wedge is defined as

Ltdist to L
CM -jP2 (CE )D '

positive in the counter-clockwise direction. The contribution due

directly to pressure forces perpendicular to the x-axis is

w

while the y-axis contribution is

CX.m C l yldy- a2 OCxdx.
W w
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Hence, the total moment Cmo is

CMo (1 + 2) xdx.,

w

but since a2 is of second order it is properly neglected in this

analysis. Again, using the results in Table 4, one has

CMO =-(2 + Z !Lxdx + (2 + Z)~ + T-/2) xdX - (3.21)
w w

The real part of wzdz is equal to uxdx on the wedge and

-i _x + -E xdx - dx

W 0 1 /
Then,

Re Ovzdz = -211b 2

T

where from equation (3.9)

= f(-)' (2.1+1)1+ 4 Tin (f/A + 1 - .T)

(T2 -1) (l-T) LJ

As before, one may write

Re wzdz = -2M2- Re wzdz.

W C

From Appendix B,

Wzdz = 0,

e

and by using the cavity boundary conditions,

Be Ovzdz - uxdx - ilxdx -/xdx) =-( 1).
S S 1

Thus, Re wzdz = 1).

C
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After introducing the above into equation (3.21), the moment coefficient

can be simplified to

=(2+E)(.){ (2 1)[ + (T2 -1)(1-T) 2 (.)
+ (1 -33) (3.22)

+ 3

Finally, one must calculate the value of the parameter I/U and

introduce it into the basic results. From Table 5,

= lyc L dx +f lyc lu d .
w~r~yfI cIL ~f~U

00 d 11 1 .

In Section 2.3, it vas noted that the quantity in the curly brackets

is the cavity area A . Substituting the value of Ac  from equation

(3.11b) Into the above equation yields

U a 2- (3.23)

Equation (3.23) is now introduced into the previously obtained results.

3.1.3. Discussion

The results of the linearized analysis, which are summarized in

Table 6, depend on the independent variables E(or J), a, and relative

vorticity 6/U. Equation (3.8) gives E explicitly as a function of

I for fixed a. Numerical results, together with computation programs,

are tabulated in Appendix F. Certain portions of these results have

been plotted to illustrate the theory.

As predicted earlier, the cavity length - cavitation number

relation, the cavity area, and the drag coefficient are independent of

the relative vorticity 6/U . On the other hand, the lift and moment

coefficients depend linearly on 6/U; both coefficients are, of course,

zero in the irrotational, parallel flow past a wedge. For reference,

Figures 7 and 8 show the drag coefficient C and cavity area Ac as

functions of E, even though they are the sam as those found in an

irrotational flow. The E- Z relationship is plotted on Figures 16
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4

and 17; the curve for asymetric shear flow is the curve labelled
a
U- = 0, i.e., the irrotational flow. For this case, Wu [181 has shown

tfat in the linearized theory, £ is liited to

1 +v~-( In ) J<W

Those results which are directly affected by vorticity are plotted

in Figures 9 through 15. The first figure shows "/s an a function

of Z. The next is a plot of a typical cavity shape which shows a

definite dependence on the relative vorticity. The two vorticity

terms in equations (3.13) account for the airfoil shape of the cavity.

The second, or logarithmic, term becomes large only near the end of

the cavity and tends to pull the cavity end downward.

The key results of the theory are the pressure, lift, and moment

coefficients. Since the latter two are linear in G/U , Figures 11 and

12 are plotted with CL/(e/U) and CM,/(e/U) as functions of E

for various ' s. The increase of both coefficients with (a) decreasing

cavitation number, (b) increasing wedge angle, and (c) increasing

relative vorticity is clearly seen. As E approaches zero, the

cavity becomes infinitely long and the magnitudes of the lift and

moment coefficients approach infinity. Tsien [121 found that this

behavior also occurs in shear flow about an infinitely long, solid

body. The pressure coefficient C is presented in Figures 13 and 14.p
The positive lift found above is represented here by the area between

corresponding curves. On the upper wedge surface near the nose, the

pressure coefficient of the linearized flow exhibits a large negative

value. This phenomenon is associated with the high velocities required

for the fluid to turn about the sharp nose point in the equivalent

nonlinearized flow; here, the stagnation point on the wedge is below

the x-axis and behind the nose. In a real flow a sma cavity may

occur on the upper surface at the nose. Such a cavity has been observed

in experiments with wedges at a small angle of incidence 7, Chap. 12,

Pt. 2, Fig. 12 11.13, P.331 where the flow patterns are essentially

equivalent to those of the present rotational flow. Figure 15, the
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final figure in the series, shows the distance x of the center of

lift from the none of the wedge.

3.2. S tric Flow Past a

The undisturbed velocity profile of the supercavitating flow is

shown in Figure 1 (dotted line profile) and again in Figure 4. The

notation, which was introduced in Section 2, is shown on Figures 4 and 5.
Note that Poisson's equation V2* = 6 holds for y > 0, but a -

holds for y < 0, contrary to the asymmetric case. This change is, of

course, due to the discontinuity in the vorticity at y = 0.

3.2.1. Solution of the boundary value problem

It is necessary to reformulate the wedge boundary value problem

outlined in Table 1 because of the symetric shear velocity profile

at infinity. However, the same conformal mappings as were used in

Section 3.1 may be used here.

In Section 2.1, the rotational flow was reduced to a harmonic

or irrotational flow by introducing the stream function p - Gy2 /2.

In the case of the symmetric flow, it is necessary to use the function

*pj - ,y /2, y > 0

and the function

- ..6y2/2, y < 0.

Then, one has as desired

a. for y>0: V 2 1MaUp= Gy

b. for y<O0: V2 *p =epUp = +y.

The remainder of the development in Section 2 is unchanged.

By comWring Figures 2 and 3a to Figure 1., one can see that the

boundary conditions in the symmetric flow are (a) the sme on the

upper and lower surfaces and (b) the same as those for the upper surface
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of the wedge in the asymmetric flow. The new boundary conditions on

the slit and mapped planes are shown in Figure 5. The mapping (3.1)

gives z as a function of C as before. The boundary value problem

for symmetric flow in terms of the complex perturbation velocity

w = u-iv is the same as that given for the wedge flow in Table 1,

except that condition (b) becomes Real (w) U E/2 + ", 1 < x <

y = 0". Note that in the symmetric flow,

E pa -PC

jPU2

It is seen from equation (3.3) that the function

w(C) 2C - C + iA(C - li/C) + U q12 + (3.214)

satisfies the differential equation and conditions (a), (b), (c), (d),

(g), and (h) of the revised boundary value problem. As before,

the remaining conditions will serve to determine A and a relation

between I and a for fixed T and a.

3.2.2. Results

The function w(V) can be expanded in descending powers of z as

z .a. The series has the form shown in equation (3.4); the boundary

conditions (e) and (f) require that aO = bO - a, = O. By using

equations (3.5) and (3.6) of Section 3.1.2, one has

= (Ua/2) + I- W c n 2AJiiJ + -A(I-I) H9-r 1l+ 'c A(.ll

+ 7(1+1)vT .z (1-1) (3J+l). 1+ 0

(3.25)

It follows that

A-0
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and

Immediately, the relation between a, o, 7, and B is found to be

a an + J-2, (3.26)

The effect of positive vorticity is to shorten the cavity for fixed a.

The complex velocity w(z) can now be written as

u(Z) - - - -=o~ 3 (3.27)

The remining calculations are based on equations (3.24) and (3.27).

Note that in this case the cavity remains symetric in shape and,

since the flow is symnetric, no lift or moments can be expected. The

quantities of interest, then, are the cavity shape, cavity area, and

the pressure and drag coefficients. Because the flow is symetric,

only the upper wedge surface Cp and upper cavity shape yc (x) need

be calculated.

The cavity area and shape are found first. From Section 2.3,

the body-cavity area is

S =Ac + a=- Imz w(z)zdz. (2.15a)
cc CB+C

The fumction Ac  is the cavity area and a is the area of the wedge.

Using the contour paths in Figure 6 and the analyticity of u(z) off

the slit leads to

W T

From equation (3.27) and the theory of residues, one has
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Thus, s . 3/2 (3.28a)
and A = a(13/2 _ 1). (3.28b)

Since a positive vorticity shortens the cavity length £ for a fixed
a, the area A is reduced also. The cavity shape is easily found

by use of equation (2.14a) and several results from Section 3.1.

From equation (3.24), the imaginary part of w(C) is

cIm [w(C] - " tan' C + A(C - l/C),

when C is real (on the upper cavity surface). From equation (2.14a),

1

Introducing the above into this result, together with equation (3.12),

gives

t,> 
.:" ':" f 4: -,(1,-1) ta "n -¢2+T) ¢ C2+R)2  -

1 (C (C)

(3.29a)

As before, x is given as a function of the parameter t by

x 1 4(n,-l),t2 ]- ¢ 3.13c)
X [- (t2+T)(t2+R)l

T = 2A - 1 + 20(7-71
and R = 2£ - 1 - 2 C-3.

Although the vorticity parameter 1/U does not enter explicitly in

the above equations, its effect is felt through the change of I for

a given a due to vorticity [see equation (3.26)].

Next, the pressure and drag coefficients are determined. The

pressure coefficient C is given by
p

p-pc
C = - ---
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as before. Following the same procedures as in Section 2.3, one is

lead to the result that

C= (2 + a)E( x.+)a12/- u/%] 0 < X<1. (3.30)

Since in this case C is symmetric with respect to the x-axis,p
equation (3.30) is valid on both upper and lower wedge surfaces.

From the similar calculations in Section 3.1.2, it follows inmediately

that on the upper wedge surface,

uFs I-s+) si +in6 1

M Re (4v2) + -L + An +In6

and

x - cos 29/(,-sin2e) (3.31)

for 0< < 11/2. Thus, equation (3.30) can be written in the form

Cm(2+a) (( ) _xl) + ff (2+a) +n Ix e)

0 < < 11/2. (3.32)

The drag coefficient C for a wedge is given in Table 4 as

-C - z
W

Utilizing the relationships developed in Section 3.1.2, one has, after

allowing for the present syumetry of the boundary conditions,

It follows Inediately from the analytic character of w and equation

(3.27) that

IM552cPs - IM,,v2dz,
w C
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since by the theory of residues

w2dz = 0.

T

The integral over the cavity is given by

I1 2 dz = ~2f6y I + U 0/ udy +f(Gjy, l + U..o.2)uecdy} + I 2dz,

C S •

where Imw 2 = -2uv on the slit. On the cavity lyc l =T, and on

the wedge ix = elyol = Ilyl/a. Thus,

l y0Id~y 7= Exdy = yjdyr 0,

W W W

and

y lYcldy = dy = 0.

S S

Furthermore, from the cavity closure requirement, dy = 0, with

W4C
the contour integral W+C being taken over the wedge-cavity combination.

Hence, one obtains

aCuD Im wdz.
e •

It is again necessary to expand w(z) about z = A. Comawring

equations (3.3a) and (3.24a), one sees that equation (B.1) in Appendix B

becomes

w(z) - + -

From this result, it follows that

w2 dz = .

I - 14J -



Using the value of JT found in Appendix B plus the value of A found

previously, one has

C = 2• (3.33)

This is formally the same equation found in the irrotational case)

however the cavity length A in equation (3.33) is altered by a first

order vorticity effect. This alteration of A causes a displacement

of the curves of CD  versus 7.

In order to define a value for I to complete the solution of

the symmetric problem, one must resort to physical and mathematical

intuition. Since the circulation r is identically zero about the

cavity in the symmetric flow, one cannot use the method of matching

circulations which was so successful in Section 3.1.2. However,

since £ is to be a representative value of glycl over the whole

cavity, it is reasonable to choose

=i (, k A a2- ' (3.34)

i.e., the mathematical average value.

3.2.3. Discussion

The results of the symetric flow analysis are su marized in

Table 7. Appendix F lists the numerical computations which have been

carried out by using the equations in Table 7. Three important results

are presented in graphical form in Figures 16 through 19.

First, the cavitation number a is plotted as a function of

cavity length . in Figures 16 and 17. It is evident that a positive

vorticity £ causes a reduction in the cavity length for fixed values

of a. Although the cavity length is infinite when a-* 0 in an

irrotational flow (C - 0), there is a umxinua A corresponding to

each value of the relative vorticity C/U > 0 in a rotational flow.

When s/U < 0, the solution to the problem is no longer unique.

Then, as seen in Figures 16 and 17 or in the tabulated data, there

exists a minimum a for each value of Q/U< 0. For each a greater
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than the minimum value, there are two possible cavity lengths - the

conjugate lengths. When a is less than the minimum value, no

solutions exist to the linearized problem. When two solutions exist,

both satisfy all imposed boundary conditions and produce physically

reasonable drag coefficients and cavity shapes (see Figures 18 and 19).

In spite of the large vorticity effects, the lower limit on the cavity

length still seems to be that value determined for irrotational flow

(see Section 3.1.3) and denoted by 1 + 2a (1 + log 2 .

Second, the drag coefficient CD is given as a function of a

and a for two values of 6/U in Figure 18. A comparison of this

figure with Figure 7 shows that when the vorticity is positive, the

values of CD for fixed a and a are slightly increased over the

corresponding irrotational values. However, when & < 0, the drag

coefficient is reduced and the CD curves in Figure 18 lie below

the comparable curves in Figure 7. One should note the reappearance

of a minimum cavitation number for 6 < 0 and the two possible CD

values for each a above the minimum.

Finally, Figure 19 shows the shapes of the cavities trailing

behind a wedge when the cavitation number is fixed and G/U is

varied. The two longest cavities shown are the conjugate length

cavities for G/U = - 0.080.

3.3 Asymmetric Flow Past a Hydrofoil

The final problem considered is a parallel, uniform shear flow

past a supercavitating flat-plate hydrofoil. The unit length hydrofoil

is placed at an angle a with the x-axis (as shown in Figure 1).

The development, based on the methods outlined in Section 2, closely

follows Parkin's solution of linearized cavity flow past a hydrofoil in

a liquid with gravity (4]. The simlarity between the present case

and the gravity flow problem will be evident. In fact, the basic

boundary value problem for the two flows differ only by a change in

sign of the perturbation parameter, i.e., /U. = -/U, where Z/U.

represents Parkin' s gravity parameter.
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3.3.1. solution of the boundary value problem

As before, the conformal mpping technique is used to solve the

boundary value problem given In Table 1. The transformations are

listed in Table 2; in Figure 3b the slit s-plane and transformed planes,

together with corresponding boundary conditions, are shown.

The solution w(C) is constructed from the singularities In

Table 3. By comparing the form of the boundary conditions and the

available singularities, one can see that v(C) should have the form

:()-L.A (~)+1. + iC~n C + if1 E

The boundary conditions in Table 1 are applied to equation (3.35) to
determine the real constants.* In snry, this leads to the folloving:

a. Re(w) aU%/2 + for real and > 1, so that

E - %E/2 + T.

b. Re (v) UE/2- for real and < -l,usothat

- C+E U E/2- and C 2iAIR.

c. IM(v) - +o1c for C on the unit seimi-cfrcle, so that

D~~ + w an B= 1c + D

d. v(s) -P-0 as z-.s In the Q-plane, as Z40

Q -)- k with k 1i" as before.

Equation (3.35) becoims

w()=iA(C-1/C) + Lirlc + 126 I

+ 0 ( + Z + %6 E/2 + 5. (3-35a)
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In this form, w satisfies the differential equation and all boundary

conditions except (e) and (f) in Table 1. These remaining boundary

conditions allow determination of A and D and development of

a cavitation-number - cavity-length relationship.

Following Parkin [4], one completes the solution of the problem

in the Q-plane (see Figure 3b). From condition (f) and item d above,

w(z) > 0 as z 4-so, while in the Q-plane, Q - ik as z - -a.

Equation (3.35a) may then be written in terms of Q, and Q must be

allowed to approach ik, where w(Q) approaches 0. In accordance

with the transformations of Table 2,

4Q + 2 - + 1/4;

hence,

= 1 + 2Q + 2 -1N(Q . (3.36)

The negative root is chosen for Q real and < - 1; otherwise, the

positive root is appropriate. When Q - ik,

-21k + 1 + fk.

Letting r = i 7'+ Wf l and a =- iz - f'l one obtains from

equation (3.35a) and the above

w(ik) = iAL + l+ s + i(2k +'Ji'r) - 1.1 ] + imc
1+r a + I (2k+Yk" r) I

+ I( + [4K s+iVk3rV1)+i(r1f)An[(l+1's) 2 + (2k + fi r)2]

- (1/lH) tan- 2k+Y r + U /2 + 7 - 0. (3.37)
1 + Wk9

Letting A - AoU and D - DoU as Parkin does, one obtains two

equations for A and Do  from the real and imaginary parts of equation

(3.37). These are
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21MrA0  --1(.- Do tal- [k + r] -U-)I.. + YT aJ

and

21 sAo +"'D =- "-- ( n (( +rs) 2 + (2k +47r)2) a (I + / 2 ) "

The equations are solved simultaneously to yield

A - 1 E (.i 1 in[(l+¥rs)2+ (2k-iY r) 2 ] _ C, (1 + 7-

r+ , l ( -C [ tanl 12k+ T r]
U~~~~2 + qT sj 33

and

k 2 -1 (2k+Yr I: in[+k

+ (2k +iREr) 2J +cE44)J] (3.38b)

* In the Q-plane, using equation (3.36), the complex perturbation velocity

is

w(q)/U iI4A0kyQ(qT4) + iD ifj71l)/-q/2 + al/2+2

+ ,.f An C.2q+21((;l")]. (3.39)

The remaining condition (o) is the closure condition. As noted

previously, if the cavity is to close, the net strength of sources

vithin the cavity nast equal sero. It is equivalent to require that

v(s) have no real residue vithin an infinitely large circle T

(see Figure 6) surrounding the cavity, i.e.,

Ia v(z)dz - 0.

T
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Because w(z) is harmonic off the slit in the z-plane, it follows that

Im 0w(z)dz = 0, (3.40)

B+C

with B+C the boundary of the foil-cavity system. Thus, in the Q-plane,

the closure integral I is

c Q

B+C

The foil-cavity system extends from -w to +w in the Q-plane. This

integral is evaluated in the classical manner by using a semi-circle

of radius R in the upper half plane to form a closed contour CR.

One has, from the given transforms,

d 2 2 (k2 + )'Q. (3.42)

Thus,

fw(Q)i dQ-O as R--

izR

and

I a .2&k2Jf w2)Q =-211 (Residues within (3.41a)
(k2 + ))2

The minus signs account for the reversal of the line integral orienta-

tion in the Q-plane. The only residue within CE occurs at the

second order pole Q = k. The residue b1  at the pole is given by (21]

b AMi **w(1Q -) (3.43)

since w(ik) - 0. The introduction of equation (3.39) into equation

(3.43) and the use of the subsequent result give

I= (s(16k2A 0+D) - 8kr(Ao+ I)-i [&sk (Ao + + r(l6k2Ao+Do3.

(3.44)
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From equations (3.40) and (3.41), it follows that

8ks(Ao + 1V- + r(l6k2Ao + D 0

for closure. By introducing the values of the constants A and Do,
00one derives

ksVWk 2r ( ( n[(l+ )2 + (2k-,4 r)2 ] +a

tali-1 2k+ 8kegi A

tsn 2+~ -1 J)

+~~~3 ir~ n E (i,W a) 2 + (kYr 2  al.))=.(3.45)

3.3.2. Results

In the previous Section 3.3.1, the basic solution v(Q) and a

relation (equation (3.45)) between the problem parameters t/U,

A, E, and a were found. Based on this information, the cavity

characteristics -- length (closure condition), area, and shape --
may be found. In turn, one can determine the pressure force coefficients

and, finally, the vorticity parameter /UL.
Upon simplification, equation (3.45) yields the closure condition

am = 7.7I-( in+(+,R s)2+ (2k+IV r) 2 ]- kn ( 12 tan" 1 Xi

+ f(3.46)

As /U) e 0, this equation reduces to Tulin's condition for closure

in the irrotational case (6), i.e.,
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with Z - a when i/U = 0. When 7/U is not zero, a positive T/U

produces a lengthening of the cavity over the irrotational case for

fixed a and Z.

The cavity shape is found by integrating equation (2.1 4 a) from

the appropriate point on the hydrofoil, i.e., the leading or trailing

edge. By employing the previously determined relation for dz/dQ and

the fact that z and Q are real on the cavity, one can integrate

equation (2.14a) directly in the Q-plane. For real Q,

wh4 LL + a± + An I1+ 2Q±+2f1(FiYI,
U + O

on the upper and lower cavity surfaces respectively. It follows that

a. on the upper cavity surface, for q > 0 and real,

yc 4 2  4+ D 0+ OR (2+Z)
2T 1J[ A0  +~ Qe~~~

0

+ M- qtn l+2Q + 2'Q(IW) -0.47a)

b. on the lower surface, for q > 1 and real,

Yc a 4k2f D (2+E)

1

- 2 2 2nl2-~~fI -. (k .Q ) -

(3.47&b)

By use of the tabulated integrals from Appendix C, these equations

may be written as

YC -4k 2  r D0  2+ a(2+Eq 2 (3. 48a)
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on the upper surface and

- = - 4 + 4AoI 4 - 1 '6 - (3.48b)

Go 41(k2 +'

on the lower cavity surface. The value of x for a corresponding q

is found by integrating equation (3.42) and is given by

x a 2(3.149)
7='(k 2+ q 2

Since the cavity and body-cavity areas are the same, the cavity

area A is (from equation (2.15a)]

C
A-- 2 m z

CAV

The contour integral is again evaluated in the Q-plane, where

0 70 u dz - -k,20 X
CAV CR (k+A)

As before, the theory of residues is applied. The only pole in the

region is the third-order pole at Q - 1k; the residue there is given

by [21]

k 212 d3r~

This equation is reduced in Appendix D. The imaginary part of the

result is

AcL, 0  ~ - r Lk- r-s - w(kr-s)J
A .1r7 4O k(14k 2+5)r + k21).] 0 2k11 I- 4'T kr

(3.50)

with A and D given by equations (3.38).

The calculation of pressure force coefficients depends on the

evaluation of the pressure coefficient, which represents the difference
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between the pressure p on the lower surface of the hydrofoil and

the cavity pressure Pc on the upper surface. These relationships

were defined in Section 2.3 and tabulated in Table 4. From that table,

C= -(2+E) ( + x -U ). (3.51)0Up
ilo

In the Q-plane the lower side of the foil is represented by Q = ge ,

o < ~ <1. Also, u/U = Real (w/U ). Using the above relations

and equation (3.39), one has

_ 4A=. t + - tan'l12 + +--- "

2 T2 2 2g2

Since z = £Q/(k2+Q), then x = j2/(k2+t2) on the hydrofoil, and

C can be written as
p

Cp=- (2+Z) (A4A + 2

[1 + I l e _ 2 . tan1 (2 1 I 0 <~ t 5, (3.52)

with tanl( )< ,.
The normal force coefficient CN  is given directly by integration

of C over the foil. Thus, from Table 4,

C N =fCpdx

0

and, from equation (3.51),

CN (2 V-( - E + 2 ft d) * 3-3
0

The integral in this equation can be written in terms of a contour

integral around the hydrofoil-cavity system, i.e.,

dx Be dz R. dx dx.
o Bso

0 + - 1 .
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VI

A comparison of the velocity functions used in the hydrofoil and wedge

flows, together with the results of Appendix B, show that there is no

contribution to the normal force from the integral of w around the

end of the cavity. This is also true for the integral wz about the

end of the cavity. Since u/U - E/2 ± /% on the upper and lower
cavity surfaces respectively, one obtains

dx = Real Q) d-z- Q+ + + "

o B+C

The introduction of this result and equation (3.i) into equation (3.53)

produces

CN--(2+E) [ 1-1 + Re(IC/U]

The final form for C. is obtained by substituting the value of Ic

from equation (3.4) and the values of the constants AO  and Do  into

this result. After some manipulation, one has

C N = (2+E)(0-k) [Cl(2+E) + Z + J[lf-)+2+F 2

2 -1l2k+lk"r OW!Er-(41Al
+ 1 tan -~k"+ HIt,

(3.-54)

where from Table 4, CL-CI_, CD=cI N, and D/L- a.

The moment coefficient 0 about the leading edge of the hydrofoil

is, from Table 4.,

-N fCxdx.
0

When Cp is introduced into this result, one derivesp
E (3.55)

0
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As before, the integral on the foil is transformed Into a contour inte-

gral with the result that

xdxdx

0 B+C 1 0

Thus,

= (2z[~.(2: + .~21-1) + Re z4S dB+C

The integral in this equation has been evaluated in Appendix D in
connection with determination of the cavity area A c . Taking the
real part of that result and introducing it into the above equation

produces

CMO = + (2+Z)(- j- + I4A-i] + A [IA([61.l]r-[12A+l]ks)D 0)
After minor re-arrangement, the moment coefficient has the form

CMO - (2+z) (-..[ ([iAllr+ks)-B2 +

.+ 4A0 . ([6__-lr-[121illks)+ 2 (r- [2k + J] )

(3.56)
Finally one determines the vorticity parameter T/U . From Table 5,

U 
0

It has been noted that this result can be written directly as

5 c(A -a/2) G(AO-a/2)
U-T15M a -f--- (3-57)

- !T~~I7 U u(2k +1)

where k = 4K'1". Recalling equation (3.50) which gives A,, one can

see that 6/U may be found directly. This calculation Involves
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solving a quadratic relation obtained by combining equations (3.50)

and (3.57) and using equation (3.46), the closure condition, to

eliminate E. The result obtained is

U- +_CDC_1_+___€~~~ V-kX +k X-- rT2 TTu l +cl + x2

4+ + UK +X2 + (kX1+X2 ) (3.58)

in terms of the notation introduced in Appendix E. For e < 0, the

minus sign is taken to preserve the form of 7/U. This is required

because X < 0 when 6 < 0. With i/U known explicitly as a function

of G/U, £(orZ), and a, the solution is complete.

3.3.3. Discussion

The solution to the hydrofoil problem is summarized in Table 8.

Appendix F lists a sample of the numerical computations carried out

by using the equations in that table. The results are presented

graphically in Figures 20 through 30.

The cavity length I is plotted as a function of cavitation

number Z for two values of the attack angle a in Figures 20 and

21. The effect of vorticity in the flow is clearly seen; for a given

Z the cavity is lengthened by positive vorticity. In Figure 22,

the effect of vorticity on the size of the vorticity parameter 1/U

is shown. A typical cavity shape is plotted in Figure 23. The

effect of positive vorticity is an increase in the cavity width and

the cavitation number for a fixed cavity length. In contrast, Parkin [4)

found that cavities effected by a transverse gravity field lie inside

the corresponding gravity-free cavity.

The normal force and moment coefficients are pictured in Figures

24 through 27. (Recall that CL = CN and CD - WCN.) The coefficients

are plotted versus E in Figures 24 and 26 for a relative vorticity

G/U - 0.04. As the cavitation number approaches zero, both sets of

curves turn upward and increase rapidly. This rapid increase in lift

and moment as the cavity becomes infinite In length is consistent with

the results of Tsien's investigations of shear flows [12] and the
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results of Section 3.1 (see Figures 3i and 12 and discussion on Pap 37).
Figures 25 and 27 show CN and Cmo as functions of d/U. Generally,

both increase as /U increases; however, the increase become

pronounced only as E becomes small. The variation of the location

of the center of lift as a function of E and G/U is given in

Figure 28.
Two sets of typical pressure coefficients are presented in Figures

29 and 30. The first shows the effect of vorticity on Cp at constant

cavity length. The second shows the effect of the cavitation number Z

on C,, when the angle of attack and vorticity are held constant. In

this shear flow theory no pathological cases (i.e., cases in which
Cp turns sharply downward) are found which would compare to those
experienced by Parkin's gravity theory. The reason for this difference

is that the change in sign of the coefficient Do  (Parkin's A0), which
causes negative lift in the gravity case, doesn't occur in the present

problem because the perturbation parameter 1/U differs from Parkin's

gravity par meter /U by a minus sign. Thus, while a strong gravity

influence causes negative lift, a strong vorticity increases the lift.

Finally, from Figures 20 and 21 and the tabulated data it is seen

that when 6/U. > 0, the problem solution is not unique. There is a

minimum I for each value of G/U, > 0. When 2 is greater than the

minimum value, there are two possible cavity lengths- conjugate lengths;

when Z is less than the mininm value, no solutions exist to the

problem. As in the case of symmetric flow past a wedge, when the two

solutions do exist, they both satisfy all conditions of the problem

and produce physically reasonable pressure force coefficients.
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4. CONCLUDING FdKQMS

In Section 3 the linearized theory has been applied to three

rotational, supercavitating flows. From these applications it may
be concluded that the effects of rotation (vorticity) are significant

whenever the magnitude of the relative vorticity 9/U is greater

than 0.02. Experimentally, the vorticity effects are most likely
to be detected in measurements of lift and moment. In the cases of

symmetric shear flow with negative vorticity and uniform shear flow
past hydrofoils with positive vorticity, further analysis and. experi-

mentation will be required to determine (a) if the non-unique solutions

found in Sections 3.2 and 3.3 do occur and (b) if the cavity might

tend to oscillate between the conjugate lengths and hence cause some

dynamic effects.

In the uniform shear flow about wedges and flat-plate hydrofoils,

the positive rotation has been shown to cause an increase in lift and

moment forces. In hydrofoil flows an attendant increase in the drag

can be expected. It is also important to recall the large increase

in the size of vorticity effects which occur as the cavity lengthens.

The work of Parkin and others on associated problems suggests that the

present linearized theory my over-estimate the vorticity effects

when the cavity is extremely long; however, the theory gives no

indication of failure in these regions. But, as the cavity length

approaches infinity, the lift and moment coefficients do become

infinite. On the other hand, in the symetric flow, the cavitation

numnber and cavity length as well as the effects of vorticity were

generally found to be bounded.

The present application is limited in several ways. The wedge

half-angles and the hydrofoil attack angles are bounded by the upper

limits associated with the basic linearized theory. Chen [2] notes
that the linear theory predicts the force coefficients with an error

of 8 percent for a flat-plate hydrofoil at 5 degrees incidence and an

error of 5 percent for a symetric wedge of 15 degrees included angle.

Finally, there is the method of determining the vorticity effect.

The method chosen is arbitrary to be sure, but its value lies in the

fact that the method (a) permits a coaritively simple solution of
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an otherwise difficult problem and (b) accounts, in general, for the

over-all vorticity effects rather than the effects at one particular

point in the flow. A specific objection which may be raised is that

the present theory cannot be extended directly to the second order

because of the averaging technique which is used. It is anticipated

that the present method can be refined in future analyses and also

extended to more general rotational flows.
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APPENDfI A
Solution of the Singular Integral Equation

The solution of the singular integral equation of the first kind

xL A- . f (x), 1 < x < A, (A-i)

is accomplished by reducing the integral equation to one of known

type by a change of variables. Let

t = ii - 1 and r =(X -  i

so that

dt 2 d., dx -

J[(.1)(t+l) +21, x - JI(I-)(r+l) +21.

Then,

IL() 0 (t) and f (x) - f (r),

while equation (A-i) becomes

V. (r). (A-2)

This equation occurs in theory of airfoil motion and is often called

the "airfoil equation." Note that Improper integrals muist be taken

with their Cauchy principal value. The solution to (A-2) is provided

by Tricomi (22]; it is

0(r) IZ2 ? (t)t + - (A-3)t-r



where z/-_ 2 represents the non-trivial solutions of the homogeneous

equation

S0(t)dt M 0t-r =O

-i

The solution to (A-2) is, as expected, non-unique; the constant

is determined by the condition of smooth separation at the trailing

edge of the wedge. Returning to the original variables,

IL(x) - - __________ fl (I)dt + ,i (A-4i)

where C has replaced 2 /ll 2 (1-1) to achieve the desired form.

For p(x) to remin finite at x - 1,

C f (t)dt.

Thus, the distribution function p can be written as

P(x) -- f x ()d (A-5)
1 #- 62 - •
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APPENIX B
Expansions at z =

In order to calculate the pressure force coefficients in a wedge

flow, it is necessary to expand the complex perturbation velocity

about z = S and to calculate contour integrals over the circle e

(see Figure 6). The velocity w(z) becomes

w(z) + MASil + 2(A 2ii(S-) i- A (i

as z A because, in equation (3.3a),

a. - 2 , IFr ,,.

b. 2i-1 +ID
C +1

c. i(C -)+ 0 (Gi ))

d. An + 0

Thus, v(z) may be written as

v~z)-]- -FO-" Ir(B-2)

where from above K - 0(o, 1). From equation (B-2)

2 ) 2 . I2 - )2 . 1 .

41- in s4 + 8iAli(A-) usi

(B-3)
TkpInterals whicl occur in the linearized theory are of the

form S)wdz, 5)wdz, v2 dz. Since only singular terms my contribute

to suc contour intesfals, one needs to evaluate contour integrals
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Ji for the following singular functions:
±q

a. f 1 . Z-2

b. f2 - infzV'-77

e. f3 = 7zn

e. f5- (in #7-'-') 2

1g" f7 .in --B--
g. ref re 1

Near z , z I - re and z re + J, where r o0 as z+ i.

Then, dz = ire ed9 on e and an integral J is given byi@

fi fi d z = r1 'O irffi (reie) eiede

e -H

All integrals of the form
H

-Ht

are finite and if

Ji - rl4mo r t E, t >0,

then such Ji - 0.

Introducing the above notation into the fl and writing the

corresponding J. gives

a " J, " i bir l/2f ea/2 W . o. 0

-H
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b. Jn rl/' 2 fe ide.-r4no rf eeie de O-T2 = r-co r

since o r  n rt = 0 for any finite t.

c. ,T3 = rl O ir3/2fe3e/2de+AJJ =0.
C. j3 = r irl_ fo / Tf i. .

sie rlOr2 nI r1/2] e 21e de -opo 2+

e. J5 = r4 O ir[/2 In rl/2) f ie/2 de o 0

since rl.p r 1/ 2 Inm r 1/ 2 = .

ir.[(jn r/2)2 + i ee/ &.

f- J6 AMO i In rnrl-/r

Since aUl other terms go imediately to zero., one has

JT6 = rZAno (in r 1/2)2 rl e ie dO.

By L'Hospitals Rule lr/

= r1 - 0, and J6  0.

r r
g" J7 = rliaOi de= 2111i.

-HX

It follows that

Wdz = 0,

Wzdz = 01

e

and

JT =w 2d" = z 2i(4A2,(,l)). (B-4)

e
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APPENDDX C
Sunmary of Cavity Shape Integrals

The results listed below and the accompanying definition of terms

are sumnarized from reference (4]. Appropriate changes of notation

have been made to make the results compatible with this development.

The new terms defined are as follows:

-~and
L2= (k'82 + "1 01) ,7. -17 (o - , 22: 132) 51 2
CO CO WC c

One then has

J (k+Q) 2(k +q2)1 7 (71+bl-q-q+l-)I + (72 q+8 2 )
+ j' n 2 2Lk(q +k )(8+2)

an-1 k + t.,- 2 q 2 . - T -1
kT

2! (k+Q 2(Z-1 (k +q 2

+ qI 1q+.~2 + B242) ]11

2CD [-((l' -lI'(~)]*(a"a 
k

952 [tei k + - .an- 2D
+ W 72 -+ l
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i .fni+2Q+ Y)QQ2

'4 ..fQ/QQ dQI

(k + Q 
2

ln[+2+2 1L 1 [ 0'+2)An(7 1 2+b[ + ,)2 BB 12)k

+ ~~ N (ta2 + k2-8 t+n ktn22-& 82)2(k2 q )2a~f ( 11 2

1 l I- (k+ ta- 2qB (q-4lIM71 2(.v+J)

2(- lieq Ta Q

+ 2Y (ten41 _ tn 1 k+tnd1 -2+2 - tan 1 -Y2 82
71q-81-fq(q-1) 1-

(k +Q ryqJ l )ill
2(k + q ) 1 + ) 1) 1 (72 + 2

2)
-2ta 1 -7n +tAn 2(y]

2 t-l k _t- k~-1 - 2q+ ta--28
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APPU fX D
Evaluation of Cowlex Integral

In the hydrofoil analysis of Section 3.3, it is necessary to find

the real and imaginary parts of

cc mw5!) zdz 2k 21 f Q3 (D-1)77., 2)3 Q
cavity ( k)

From the theory of residues,

Cc = - ib1  (D-2)

with b = the residue at the triple pole Q = Ik. Now,

2 2
b -k ed

On performing the indicated differentiation and noting that v(ik) m 0,

one obtains

From equation (3.39), the derivatives of the coulex velocity are

. Q(2)Ab)" P -.+

and

~''QQ~)'[2A6 + q~ (3+IIQ) ( ~2Q+1l)J

These derivatives are evaluated at Q - Ik and introduced into equation

(D-3). The resulting value of b1  is then substituted into equation

(D-2). After sow siMlification, including the use of equation (3.44)

and the closure condition, Cc may be written as
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8* ~c0  (A0C(6..1)r-(12i)c3 + T(z,-(2k + i)uJ

M+ ' (4k2+5r+ks] + i F'4A (kC4k2+5r+2?+11s) - 2 t4ir-so

Ire,-14
W- kr-s (D-j
00
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APPI DIX E
Solution of Quadratic Equation for i/U

The vorticity parameter 7/U is found as the solution to a

quadratic equation. The equation is obtained by combining equations

(3.50) and (3.57) and using equation (3.46), the closure condition,

to eliminate E. Parkin has solved the analogous gravity parameter

problem ([4]. The nomenclature used here is essentially Parkin's,

but the results are somewhat different.

The following simplifying and systematizing terms are introduced:

)2] 2 -1 2+ 4)H(k) - 1 [(l s)2+(2k+ r )2]- k1 51 - 23 t ' . ,f+,tk 144 a (k+ 11)

C 1 (k) 1I r., c(k) -

C() n (+Vfs) (2k+k r) 2 5 r2l 2 tan-l 2k+VcQ(k) - C (k)
2AK 2

C6(k) 2= L An MAP E n)2+(2k+ITJ r) 2  r 1 -r a "  +I ,

Q2(k) = E k(1k2+5)r + (2k2+l)s],

Q3(k) (kr-s),

and finally

- C -C - 1,

X2  C2Q + C52,

x3 C3 Q1 - ^-6Q 2 - , and

- 2(202 + 1)()-

e -70 -



F

By using these term one may nov wit

a. Equation (3.16) as

b. Equations(3.38) as

and

c. the combination of equations (3.57) and (3.50) as

X- =. + Q.C2  3  (1 + .1 -

Thus..

-) -1 -1 X3X4 02 'lX

and

+ -x+x + X (E-2)"- ",+(f/7 + I E~ "o .,. x2. (

Now, solving equation (E-I) for (I+E2) produces

k. +(,/U,)H
+ a (Z-3)

The combination of (E-2) and (E-3) in order to eliminate (1+E/2) yields

(-CXk+X 3(k-c) +mc2 + C - a(Xlk+X2) 0.
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The solution of the quadratic equation (E-4) is

R 1 X

+ k 4+ -'a)x 3 + ON~ 2 + 4X4 (k+X )
+ X2 H +X2 )}. (E-5)

When (e/U) > 0 (X4 > 0), the positive square root must be chosen

because otherwise (9/%) approaches a finite limit as e -, 0+; this

is of course impossible. For (6/U) < 0 (x4 < 0), the negative square

root is chosen.
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APPENDIX F
Computations

The computations for the present work were accomplished at the

Stanford University Computation Center on a Burroughs 220 Electronic

Data Processing System. The installation at Stanford consists of a

Burroughs Algebraic Compiler, the 220 digital computer with 10,000

words of core storage, and peripheral equipment. The compiler accepts
symbolic programs written in BALGOL, an algorithmic language based
on ALGOL [23] and produces machine-language programs for the computer

241.
The programs listed in this appendix are written in the Stanford

version of BALGOL. The BALGOL language statements are reasonably

self-evident. In the programs shown, use has been made of the computer's

ability to perform repetitive and complex arithmetic calculations with

great speed. Note that each FOR statement indicates a group of

calculations (delineated by the BEGIN - END pair) which are to be

repetitively done. These statements are sometimes nested within each

other. For example, if a FOR group is to be repeated 10 times and

it contains another FOR group which is to be repeated 10 times, 100
repetitions will occur within the second or nested group. The

PROCEDURE SIMPSON 1() is a closed, independent routine which performs

numerical integration according to Simpson's Rule; the procedure may

be called and used at any time in a program in which the procedure

is defined.

When the results are truncated by the computer during calculations

and print-out, no rounding occurs. Thus, truncation causes an un-

certainty of one unit in the last figure of all the tabulated data.
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UNIT WEDGE IN SYMMETRIC SHEAR FLOW)

EPSILON/U - .04 -. 1961 *50.0 569.57 *11079136 .1014
-. 2958 W00o 1911.0 .1539423 .1615 *

ALPHA - .08126 -.4306 1000. 9616 *22096606 .1)49 ,

SIGMA L. AREA EPSILON/U CD ALPH4A - .2617S

.6914 1.50 .07305 .00292147 .114 SI1G04A L MIEA EPSILON/u CO

.2649 2.000 .15954 *00819097 .2900

.2145 2.500 .2154" *00$43*1 .2270 2.902 1.500 .21914 .01763124 6.006

.1770 3.000 .36615 .00$551bb *19?4 1.1?? 2.000 .07664 *01914562 to56a

.1351 4.000 .61081 .00407213 .1569 07976 2.500 .77899 *02061321 1 .0817

.0980 5.000 1.1961 *0014077 .1447 .5222 3.000 1.0964 002196917 .6194

.0550 10.00 2.57*1 .009)09 .131? .4449 4.000 10.82 .02443279 .5462

.0478 11.00 4.9120 *00711726 .1247 .2959 6.000 3.6IS .026W847 .5270

.051 20.00 ?.?ITS .00012369 .1212 .1747 10.00 6.01"4 .05647 .43761

.022) 30.00 14.2%1 .0098228 .1175 *1042 11.00 14.946 .0427040 .353
-.0011 20.00 344.0) .017954 .1os1 -.016 20.00 2.1 .071)99 .32
-.0099 50.00 30.75) .0162155 .1141 .0011 20.00 2.152 .0909142 .372
-.0099 290.0 74.55 .0151226) .1112 009 30.00 4221 .058399 .32
-.0645 100.0 911.10 .0)90996 .1016 -. 1954 90.00 223.24 .10053701 .2931
-.1038 1000. 2759.3 .0524151 .0999 -.2963 210.0 1034.1 .I" 10 7 0 .2428

-.4459 100.0 2925.5 .23659138 .2015
ALP64A - .17452 -.5485 1000. 62779 .33144900 .158S

SIGMA L AREA EPSILON/u CO EPSILON/U .04

1.310 1.500 .15509 .00164174 1.6 ALPHA * .061726
.5875 2.000 .31909 .006194 .7905
.4628 2.100 SIS3 .0067107 .5708 SIGMA L AREA E1PSILON/U CO
.3901 3.000 .73211 .00732312 .4750
.2931 4.000 1.2215 .006114426 .346 .1084 1.100 .07304 -.00892167 .1234
.2073 5.000 2.390S *0095151 .3247 .2996 2.000 .15934 -. 00219097 .2937
.1575 10.00 1.3442 .0114619 .2619 .2297 2.5000 .217"8 -.00840061 .2301
.0971 11.00 9.9441 .0162545S .2516 .1930 3.000 .35411 -. 0084413 ages3
.0741 20.00 15.435 .01524739 .2515 .15 4.000 .51061 -. 90407211 .1717
.0411 30.00 26.102 .019537 .2404 .1162 5.000 1.1951 -. 0"41677 .1495t
.0139 $0.00 51.527 .02511331 .2296 .0907 10.00 2.5711 -.0019580 .134

-. 0201 90.00 158.63 .01344347 .2201 .0784 19.00 40980 w.00711726 .1263
-. 00)7 210.0 489.57 .0 M"15 .2047 .0494 20.00 7.7175 -. 6M18349 . Ina
-. 1374 500.0 1911.0 .07619712 .1930 .0524 30.00 14.261 -.0098262 .122
-. 1063 1000. 5116 .11046302 .1765, .0176 50.00 30.75 -. 0189088s .1*0

.0977 90.00 76.416 -. 614726 *list
ALPHA - .25176 .069" 210.0 344.83 -. 02759784 .1194

.0461 100.0 971.5 ..$"*gets .1814
SIGMA L AREA EPSILORN cc .1119 1000. 219.3 -. @58191 .157

2.945 1.100 .21914 .00675552 5.115 ALP14A - .17418
1.206 2.000 .47644 .009129I 1.711
.0272 2.580 *7729 .01010441 1.110 SIGMA L AREA EPS11IN co
.0117 5.000 1.0964 .0109064 .6766
.4718 *.000 1.6324 .0122189 ."8B0 1.349 1.*"* .14409 -.60046974b 1.610
.329o645000 3.951 .01434233 .14a? .7016 2.000 *SIM0 -.001634 .8110
.2149 30.00 8.0164 .01781426 .4142 .159 2.100 .01133 -. 011647107 ms65
.1911 11.00 14.944 .02131160 .4131 .4244 3.000 .78631 -. 00732112 06981
.1143 20.00 23.152 .02437106 .3921 .3312 4.600 1.2214 .0852 .602s
.0696 30.00 42.71 .02964486 ."493 .2499 668 2.98 -.669821 .374
.0212 0.00 92.291 .01784996 .3*71 It86 10.00 $.No5 -.811875*9 .2917

-. 0305 900 23.24 .01015651 .3257 *1161 11.00 9.0641 -.91689612 .2772
-. 125 210.0 1034.3 .06209312 .2934 .1424 20.00 11.511 *8125l .54
-.207a 000.0 2925.5 *11729666 .1601 .1214 50.00 sees0" -81988m47 .OR=
-. 3134 100. 6277.9 .15572145) .2371 .1174 10.00 61121 .0111191 .8141

.1188 90.00 348.61 -.00846967 ."911
EPSILON/u - .06 .1409 218. 609.47? .189 .2"65

.1760 100.0 1951.0 -. 071112I .2840
ALPHA * .00728 .25" 1000. 1116.8 -. 11046102 1.76 1

SIGMA L MIEA EPSILON/u CO ALPHA 6*.28116

.4841 1.100 .01304 .0608574 .1143 SIGMA L AREA EPSILON/v co

.2176 2.090 .11914 .00010194 .2661

.80148 8.900 *25?7s .0587107 .2204 3.054 1.100 021914 .00676982 5.34

.1to" 56000 .38416 .007)2518 .1900 1.8"6 2.000 .471m -. 00991691 1.78

.1214 *.008 .1041 .00616425 .1618 .6841 8.100 .1299 -.600041 1.13

.0679 4.000 1.1911 .0060991 .1491 .7105 $.000 loom8 -. 01098446 .918s

.0534 10.00 2.4721 *81107419 .1301 .1569 5.000 1.8324 -- 0421169 07141

.0329 1.00 4.9180 .014*3453 .1289 .3970 5.000 $4.19, -.03496113 .175

.0194 20.66 7.1"7 .0152*139 .1192 .2918 10.00 6.0155 -.0178142 .4871

.0022 30.00 14.251 .01969667 .1151 .2450 13.00 16.964 -001180100 .4499
-. 0166 50.60 30.753 Oni11ssi .11ls .2199 20.00 23.312 -. 0805710606.388
-0420 90.00 75.416 .0334414 .1076 .1918 30.00 42.7153 -698 .4111

-. 0973 299.8 344.63 00491s .360" .1794 30.00 Ma.gi -. 09184994 .480
-. 1411 100.8 975.1 .07659112 .8911 .17 90.00 881.84 -. 0640681 .194
-. 8144 1000 2719.5 .11088 .oeae .2129 290.0 MOOD. -. 0099192 .489

.2864 100. 8916.1 -411794 .4wOM
ALP"A a .17452 oases 1060. 8277. -. 1101 .48S6

SiGtA L ARA EPSII.ON/v Co EPSILON/ --. 06

1.291 1.30 0.14819 .Los"4 168 ALPHA a .00726
.4184 Stev0 .SIM8 .01275308 .7084
.4694 2.10 .S1%3S 00014810, .302? SIGMA L ANEA EPSILON/v Co
.31"9 age .13281 .014044 .4498
.8141 *.000 1.2218 .0142001 .3652 .117 3.1901* .00-098374 .125

so"8 5.000 2.set3 .81918311 .5101 .009 s.000 .1994 -.000650194 .29
.1 136.60 so""4 .01679258 .2T1 .8574 lo .1 0.218 -. 061l07 .ea17

.0572 13.00 909641 .0m407 .1s .201 2.006 .3*819 -. 00152332 .2816

.039" &*.o* 15.639 em"TT47 .2853 .1523 4.000 .86601 .0661*4*5 .1TSI

.00*49 Met0 24.902 .059sis1 .2309 .1262 4.0060 161991 -.64111M loo9
-059" S0.00 Gloss? .09082841 .21821 .1050 10.00 8.5121 -. 8110819 .1554

AM88 90.00 1"46 .0 91*4 .808 -8 .0912 11.00 4.09080 -. 01423433 .1901



:0061 20.00 7.1111 -683#8619 91872 UNIT HYDOFOIL IN SWEAN FLOW
.00l$ 10.00 14:891 -.0*0431b .1846
.0404 10.00 80.748 -6011111121 .0 PSILON/V *.00
:093s 0.00 74.414 -.0886000 .180
.331 200.0 804.08 -.0m ~00 .180 ALPHA .01?45.141 900.0 919.00 -. 071918 *00e
.284 1000. 219.3 -.21040808 *1o01 SIGMA L AREA IPSISAR/L coo CH

ALPHA - .11432 .071 1.810 .00848 .000001140 00909 *89
:0020 1.350 .01840 .00006000 30761 .0290SIGMA L AREA 9PSILON/v co .067 A.0 Go 06200 .000000 .00 .081
96506 100 .00813 .0000000 .0688 .08891.849 1.300 .14409 -. 01148149 1.991 .0411 1.110 .061? .00000000 .0112? .0201*7149 2.000 .S1909 -. 01870800 .0815 .0811 8.000 .001994 .00000000 .0670 .0148.3841 2.300 .31188 -. 01*74811 .614S .0809 s.et" .0101 .0000000010 .0010 .0180."4s0 8.000 .7831 -. 09404624 .491 .0049 8.000 .07194 .0000000 .030 .0181.8100 4.000 1.8816 -. 016402 .6090 .0808 4.0040.11088 .0000000 .0844 .0118.2712 0.000 2.590S -. 01918811 .8480 .0174 1.000 .15575 .0000000 s0om9 .0100.8140 10.00 3.844 -. 04888 .8084 .0181 T.000 .801191 .00000008 .0809 661190.1004 11.00 909641 -. 080490, .m01 .0117120.00 .48810 .0000000 .0100 .009.1149 80.00 13.483 .001149477 .8111 000 80.00 180 .001000000 60247 .091190.104 80.00 80.502 -. 09*1511 .108 .0014 40.00 8.4419 :0000000 .0800 .000. 191 80.00 01.38? -.000182641 08640 .041 40.00 .819 .000000100 .0810 .01101.101 90.00 140.08 -. 066491M4 .8082 .0081 100.0 13.107 .0000000 .081? .0004.218 ag0.0 40.7 -. 11019136 .8081

.0360 100.0 1931.0 -. 13489488 .8081 ALPHA 0 08490

.4198 1000. $14.0 .090605 .188SGAI ntA " C
SIGM~SGM L ARIA 9PSISARIL CM CM 02 076 *000" o14 02

.11"0 1.4600 .01001 .0000000.149? .01388.0?? 1.500 .21914 -. 01753184 6.4648 .2080 1.900 .04802 .0000000 .1888 .0608
.0314 2.900 .17899 -. 01061322 1.100 .0128 8.000 .01909 .0001000 .0071 .03S0.1400 8.000 1.0om -. 081949317 .93144 .000 8#010 .11014 .00000M0 .0043 .080.3493 4.040 1.81104 -. 084481 .71) f0ew 8000 .1289 .00000000 00111 .081.4813 4.900 8.0189 -.080081 .06911 .9411 4.000.810466 .0400010100 .0100 .0200
.8814 10.00 0.0244 -. 08968011 04*9 o1 " .0 0.90767 .0000000 .0610 .0816.2919 1S.00 14.944 -. 048108009 .44w9 .0811 U640 .3408 .00000000 .001 .9000*287 80.00 88.138 -. 0414811 .4080 .908 19.00 406711, .00100006 .0001 .0198=30 DO."0 "48. -. 0109478 .9012 30.00 80 to .41% .*$0000m .0119 .0108MS10 S0.00 98.891 -. 07539991 .4881 .0112 40.00 0.99 .00000 .0404 .0211.81114 99.O 88.684 -. 1011311102 .409 .01091 0000 18.141 .0000000 .06660 .01ls.SOR1 8%0.0 1084.1 "110471 .6169 .0110 100.0 27.41S .0000000 .001,0 .0214
.001 300.0 2924.1 -08W09126 WKS4
."91t 1000. 0817.9 -.882449001 .04 ALPHA * .01

SIGMA L ARIA EPOSIM.I C" Ca

.*as9 1.810 .00180 .00010000 .810 .1211

.8001 l.as0 .07101 .00090000 .06" .001

.1001 1.600 .01056 ***00m00 .&9w8 .0000

.1199 2.100 .00189 .0000000 .8800 .0144
CAVITY SNADE- SIM 10011 FLOW .20 1.110 .9998 .0000009 ell&* .0044

ALPHA - .04786 .s1e" 8#000 .16918 .000000$M .192 .008.0100 5.000 .8ale" .0009000 .19" .0900
CPSULOMIU - .060 gPSLOMIv -**O ."Is8 460190 *saw .00006M0 .20108 .011

.0581 too"00.46380 .000000 . s0ea."L - 3.80 SIGMA - .1000 L *10.0 SIoMA - .1000 .00319 7.00 .04114 *@$bow09 .0018 .990
.0919 19.00 1.D0ls .4000000 .go"& 01"s

x Yu IL x Yu IL .0848 8i.*" 8.6071 .0000990w .0011 .011
.0349 400 10.448 .0000001 .001 **861149 118 -.1208 1.401 .1102 -.1101 .028 0.00 It9.13 .09000000 .00 00804

8.494 .1354 -.2894 .4006 .*111& -.10 0 100S f.0 4.18 .000001100 .008 .04108
8.911 .1800 -. 1800 0.101 .1014 -.3014
4.97S .0912 -. 91 0.190 .1653 .03451 ALPHA *.06961
4.08 .0618 -.0018 9.818 .1t9 -. 2898
$*0R& .01149 -. 0m0 9.98 .1000 .,099 SIGM L AREA IPSIOAA~j CR C"see"0 .0809 -. 0969 10.88 .0109 -. 0109
9121 .03441 -.*000 10.49 .089 -*0009 "841 1.290 .00911 .0000000067 ell" .135.159 .0840 -g08m 10.00 .0911 -. 0911 .3166 2.880 .09418 .00000 .3000 .2489
3.318 .01101, -.080 J0.00 .048 -. 0088 .8401 2.400 *1000 .000000M .111 41241
Sol"9 .0213 -. 0171 10.9 .0814 -. 0254 .839 1.809S .0018 .0000090111 *a9m .t0?%$106 .0140 -. 014S 20.18 .002 -.0021 .21189 1.790 .18811 ***00o0m .8891 .00
5.309 .0281 -. 031 10.11 .0em -. 0859 .1301 8.000 .s19e" .000000 .80999 .01831
3.393 .0100 -. 0100 10.10 .08 -.08 100 l 8.30 .811089 40010060 .*1"* .003.194 .009 -. 0091 20.1? .0191 -. 0191 .110 00 .110 .0000.080@ .0048so

Not8 .000 .^9t .000001000 .1,11 00
EPSILGoMAD a .00 PSILOMIU .... 90 .0188 5.000 .44494 .0000000 .399 o9ft0

.0oes Tom0 I.2ay* .00644100 .e80 .*%&I
L - S.1O SIGMA a .1000 L - 180. SIGMA a s1l00 .0414 20.00 1731 .9000000 .28l" .019

.088 89.010 4.9090 .09000 9317 .0910x Yui YL I v T .0834 40.00 38.071 .009000 93348 .090
.0108 00.00 &6.445 .0000000 .2l10 .0904

20641 .1186 -. 1186 3.313 .1810 -02816 .0143100.0* 8403 .90000010 .2180 .010
20962 43409 -. 2409 4.894 .*as" -.*am
4010 .3482 -.3481 11.00 .8100 -901006 ALPHA G, .64186
3.413 .1186 -. 1186 84.931 .491 -.491
0.330 0049 -60049 41 99960 -.940 SIGMA L AREA 908IOA8"M Co C"
0611 .0 -." 009 1.0 .00 .6101 .48809 1.890 .12814 .0009000 .4834 .890y

6.390 .0893 -. 0395 98.89 .3402 -.301 .8008 l.as0 6.31142 OWS000 .MW0 .1911
0.480 $001t -00339 138. .49018 -. 49082 .mo0 .400 *law0 **$*sow9 06690 .34410.491 .028 -s0on$ 120.3 .800 -. 4800 .801512.300 .31296% #*$*0ow0.8911 .glut
.444 0180 -.9880 114.9 813 -0961 .8841 Iglo0 .240" .090000 :82,80 200#67% 0010? -. 0167 110.3 .984 -.8880 .1918 3.000 .1991 00000000 .810 09"

0.OW .0101 -.00 1230.1 .891 -.3923 .3184 let"002.190 .0000000 .sale .9410.400 .0140 -. 0340 388.4 .8800 -. 8904 .3131 1.000 .89931 .0009000 .8099 .009049 .0188 -.0lga 188.? .8871 -. 811 .1001 4.000 .3933, 090000110 .1641 .0088
."It8 9.000 .10041 .000000 .3100 .ow1s

Go 8Go



of10 7.00O 1.4095 606004000 .165 .0181 .1186 a.00 .0110 .000210986 .37"0 .0960
.059, 10.00 291689 .60009000 .1575 .0499 .151 2.160 027896 .000235007 salts .0719
. 0406 60.00 6.1519 .60000000 .1485 .0467 .1555 $.000 *56068 .00857768 .8144 .6694
.023 46.00 17.359 .00000 .14)6 .0400 .1004 4.000 .94411& 0029070, .1956 00616
*0229 40.00 31.654 .00000 .1420 0044 009$791 O .0 0.76916S .00951,81 .32# .00516
.0176 100.0 640159 .00000000 .1405 .0640 .0707 7.500 1.4654 .0646066 oils$ .05531

:0650 10.= 8:8195" .04709 .140 :4015
CPSILOWU - .06 .046" G.0 4.981 .0066815 .1656 .0

:0500 46.00 30.1"4 061819044; .119 .0001
ALPHA *.01745 .0885 40.00 59.169 .0151464 .1683 .051s

.06 106.0 95.467 .01616461 .6686 .0556
SIGMA L AREA IPSISARIU CM CM

CPSILOM/U -*.06
.0725 1.250 .023S4 .00054900 .0912 .0)66
.0626 1.550 .03562 .0003409 .0785 .0392 ALPHA *.01745
.0569 1.400 .02516 .00036s78 .0710 .0260
. 0506 1.500 .03753 .00037250 .0697 .0236 SIGMA L. AREA 3551046/U CM CM
.0414 1.750 .0S347 .00059620 .012 .01ls
.0556 2.000 .04031 .00042366 .0476 .0162 .0787 1.650 .03666 .60074560 .0915 .0546
.0898 3.500 .05965 .00047165 .0417 .01)6 .0450 1.550 .011,6 .600190 .00166 .6291
.023 5.000 .07316 .00061600 .0567 .0135 .0018 1.400 .06556 .000159944 .0714, *68s9
.0800 6.000 .11271 *40059474 .0556 .0111 .0511 1.900 .66151 .0015)20 .4061 .0336
.0160 5.000 .15606 .00066411 .0)61 .0107 .0417 1.750 .0511 .600605906 .657 .0164
.013 7.500 .39542 .00061376 .0)25 .0100 .0561 3.000 .06060 .0005693 .666 .0161
.0133 10.00 .65649 .00096300 .0580 . 009? .0696 2.500 .01461 .00095965 .0484 .0156
.0067 30.000 1.5407 .00136646 .0520 .Offs .0651 5.000 .01446 .0016056 .6099% .016
.0065 40.00 4.0430 .0026423 .03S7 .009? .0313 4.000 .115"40.00133065 .0561 .6114
.0056 40.00 7.6564 .00261699 .0357 .0101 .0166 5.000 .16311 .094137024 .0554 .01
.0046 100.0 16.763 .00577031 .0)96 *0109 .0149 7.500 .5099 .40149997 .054 .61s"

.0189 10.00 .66117 :&u .095 0.0468 .6100
ALPHA .05490 .009 360 1GO .4169 .0051414 .0541 .6101

.0016 66.00 4.457 .064010 .0617 .1111
SIGMA L. ARIA CPSISAR/U CM CM .007 66.00 1069 .0014616 .04464 .184

.0076 100.0 29.606 .0119$"? .006" .6100
.1504 1.850 .04506 .000751?) .1965 .0749
.1326 1.350 .04761 .00073601 .1615 .0483 ALP04A oO.0490
.1173 1.00 .00052 .0007)122 .1505 .61
.16S 1.900 .6046) .00016440 .1361 .0463 StEAM A ARIA EP536A/u cis cm
.00645 1.750 .06695 .0001112 .1109 .0849
.0739 3.000 .00073 .0066450 .096? .65 .1506 1.350 .0641 .00546046 .1913 .0141
.0991 3.500 .11160 .000941112 .0059 .0304 .1568 1.550 .66190 .00147064 .1401 .6631
.0516 5.000 .146%4 .60165160 .0794 .0356 .1171 1.400 OSGOOD .e*001460 .1514 .0050
.0430 6.000 .22S64 .00116934 .0721 .031 .1046 1.500 .65501 .0060540 .1550 .641
.0565 5.000 .51609 .0015320" .0491 .08 .00M1 1.150 .06158 .0016009621 30t .0565
.0366 7.500 *So#&$ .0016270? .0400 .0304 .0756 3.000 .00156 .01115616 60999 .055
.0347 10.00 .91869 .00166543 .06461 .0196 .0601 3.50D0.11381 .001165 .01 .0 305*$U
.0116 30.00 2.0603 .00179109 .046" .0198 .0533 5.000 .1404% .000816940 .04011 .0On9
.0151 40.00 6.07 .00406391 .0479 .0196 .6639 6.000 .3006 000848901 .0150 .0o5)
.0318 66.00 35.704 .00537455 .0716 .0304 .0515 5.000 .038985 .01101911 .071 .0361
.0096 100.0 57.493 .00755)61 .0600 .0330 s0ow 7.500 .61158 .00559175 .0096 .6000

.0061 16.00 .6M80 00590016 .0694 .060
ALPHA *.0%23S .0194 30.0 2.9509 .6000800 .6189 .660

.0157 46.00 9.66 .0091913 .4"00926
S IG14A L ARIA IPSISAR/U cot cm .01"6 60.00 0.455 .6151436 .0972 .6850

.0153 160.0 59.117 .0119,646 158 .6581fta
.34 1.350 .06761 .001106,10 .3168 .1314
.3013 1.550 .07143 .00109166 .8660 .0999 ALPHA *.05355
.1613 1.400 .07547 .00109660 .396 .0676
.1606 1.500 .00193 .00111650 .8130 .0762 SIGMA L. ASIA 1PSI6ARRD COB CM
.139" 1.750 .10056 .00116684 .1756 .0404
.1114 3.000 .16316 .00126480 .1554 .0S22 .8551 1.310 .66 .0086535 .5195 01811
.0906 &.Soo .16144 .00141518 .36 .0459 .2036 1.550 .07" .0602804041 68691 .6996,
.0761 3.000 .611946 .00194786 .1823 .0597 .1619 1.40 0.0193 .0681196 .8006 00176
.0697 4.000 SS69 00176988 .3114 .0995 .1614 1.600 .00849 00229106 .39 .6611
.0553 S.000O .41402 .00199346 .1061 .0$34 .1504 1.150 .10164 966240664 .1194 .6601
.0656 7.500 .67970 .0023965 *1004 .0510 .1184 3.000 .least .006486 .19114 .0922
.0515 10.00 1.3665 .00248721 .0904 .0500 .0915 3.500 .1691 .4014119406.15 0040
.0365 20.00 4.0169 .00609617 .0916 .0291 .019s .000 .38516 .0015651 .169 .03199
.0197 40.00 18.113 .00613113 .10ss .0301 .0651 4.000 .56946 .00565191 .1149 .0066
.0169 60.00 23.146 .00190655 .10412 .0507 .0966 5.000 .66161 .60610004 .1106 .0536
.0146 100.0 50.191 .01139070 .1205 .03 .0054 7.509 .91410 .605958 0.60 .6

.0594 10.00 1.44111 6099111, *less 409
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APPUMTl G
S uperavitatin Flow about a Slender Wedge

in a Transverse Gavity Field

Here the results of Section 3.1 are used tv calculate the flow

parameters for a supercavitating flow about a slender wedge in a trans-

verse gravity field. The corresponding flow about a supercavitating,

flat-plate hydrofoil has been studied by Parkin [4], while Acosta [5]

considered the flow about a slender wedge in a longitudinal gravity

field. The purpose of this work is to complete the studies of

gravity effects in linearized flow. As in Parkin's work, this treat-

ment of the problem is not capable of describing cavity flows with

large, bouyant effects. The theory is expected to be valid when the

effects of gravity are of first order smallness consistent with the

linearization approximations. The notation used here is consistent

with that used previously.

The base flow is an irrotational, inviscid, and incompressible

uniform flow extending to infinity. The upstream velocity far from

the wedge is U , and the origin of the coordinates (xy) is taken at

the nose of the unit length wedge which is aligned symmetrically in

the flow. The reference elevation at infinity is, then, zero. The

flow is sketched in Figure 31. The acceleration g due to gravity

is directed downward in the minus y-direction, perpendicular to the
freestream velocity and wedge path.

In this flow, Bernoulli's equation is given by

0 q oWp c + Jpqc + pgc' (0-1)

with the subscripts referring to infinity, the wedge surface, and the

cavity surface respectively. Since the condition of constant pressure

in the cavity must be satisfied in steady flow, the non-dimensionsl

cavitation number may be defined as

a•- PT (0-2)
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Another characteristic non-dimensional pargmeter peculiar to gravity

flows is the Froude Number F which is given by

9' = UJ/g(l),

when based on the unit length of the wedge.

In accordance with the assumptions of the linearized theory

developed in Section 2, the flow velocities near the body are assumed

to be represented by the perturbation components u and v such that

q + .,. u,v

at any point in the flow. From equation (G-1), one has, to the first

order, on the cavity

U a 97c(G-3)

In accordance with the basic assumption of slenderness in the linearized

theory, one can argue that the variations in the gravity term in

equation (0-3) are small over most of the cavity (see Section 2.1).

Thus, the term gy,/U. may be replaced by an average term + g. The

boundary conditinn (G-3) becomes

D- 2 I y>U 0 y>O,
2 U'

and (0-3a)
U a* I
T "f- + *1J

on the cavity surfaces. On the wedge, the boundary condition is given

by

dyo (x) v(x,Yo)
n a = +u(x, y). (0-4)

If one lets U - U ( - a result from the zero gravity case -

and expands equation (0-l) in terms of Uc, he finds, to the first

order, that
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V - c, y >0,

and (G-a)
v - -cii, y < 0,)

on the wedge.

From the results of Section 2.2, it follows that the boundary

conditions (G-3a) and (G-4a), together with three assumptions - cavity

closure, the vanishing of the perturbation velocities at infinity,

and smooth separation at the trailing edges of the wedge - are sufficient

to determine a solution to a boundary value problem for the complex

perturbation velocity w. Recall that w was defined in Section 2.2 as

w = u - iv,

with w analytic outside the slit x-axis of the physical z-plane.

The complete boundary value problem is as follows:

To find w(.), analytic off the slit, such that

62v
D.E. -w-=0

B. C. +

a) Real (w) - -g, 1< x < , y

Uo"
b) Real (w) = +

c) Im(w)=--*U, o<x<l, y-o

d) Im (w) .c*, 0<x<l y.O"c - -

e) the cavity closes, i.e., the net source strength is

zero on the slit.

f) w(z) - 0 as z

g) there are no singularities at the trailing edges of

the wedge.
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As before, z = x + iy, and the boundary conditions are applied on the

slit x-axis in the complex z-plane.

If g = -6, the above boundary value problem for a "gravity flow"

is precisely the same as that given in Table 1 for a uniform shear

flow past a wedge. Again, one sees the similarity, at least in the

linearized case, of rotational and gravity flows. Because of this

similarity, the results of Section 3.1 may be used directly after

appropriate changes of notation.

One finds first that the gravity field has no effect on the

cavitation number - cavity length equation or the cavity area. Thus,

and

A = (13/2 _ 1). (a-6)

Second, on the cavity surfaces the horizontal component of the

velocity is

on the upper and lower surfaces respectively. Thus, one has for the

cavity shape

+c a dx

on the upper surface and

T= Iiv

on the lower surface. From equations (3.13) of Section 3.1, following

substitution of -j for I, one finds that
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r 'ta . -j
.. Ug 1",

" a 7 c tan 'z_)d t > 1, (G-7?)

on the upper surface.

b. Yc a +8(11-1) AFID - +2 iT',7 U 47g
c 1

" -E"c tn'z) t <-1, (c-8)(g2.T)2(t2,]R)2J

on the lower surface.

C.x.[ 4 (Alt (G-9).-=(t2,T) (t2, 3)] .

Also, from Section 3.1, the constants A and D are

and

D=Z +6{ An (IT +1fih

Inthe above, T = 21 - . + 2 -Wri )

and R = 2 - 1 - 2 'W1).

The pressure force coefficients are calculated next. The major

difference between the rotational and gravity cases occurs in these

calculations. This difference is due to the fact that while the ro-

tational effect enters the pressure coefficient Cp only through the

perturbation velocity terms, the gravity effect enters through both

the velocities and the term pgyc in the Bernoulli equation (0-1).

The pressure coefficient C is defined to be
p
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I

p M P c 0C = (o-io)

Thus, CPo "P a
C =(r+ -o

p j

and, from equation (G-1), one obtains

2--r+i- % 2gy°

In accordance with Parkin's discussion[4] regarding the linear contribu-

tion from the second order term (u/U) 2, one obtains after linearization

the relation

where + I g . replaces gyo/U on the upper and lower wedge surfaces

respectively. One should refer to Section 2.3 for a detailed discussion

of this substitution and should compare equation (G-nl) with its rota-

tional equivalent equation (3.14). By using the results of that section,

one has

C 2+0- (a (sinO Il+a1nel
p ( x + (2+c-) (2+o) + In I='-s8l

p0 - 2, 
)t n

with x = I cos2e/(A-sin2e). The minus sign and 0 < e < 11/2 apply to
the upper wedge surface; the plus sign and 1/2 < e < 1 apply to the

lower surface.

The remainder of the force coefficients are determined from

equation (G-11). First, the drag coefficient CD is given in Table 4

as

D -

BODY

-. 92-



Since U y = vx on the wedge and 2uv =-Im w2(z), one may write

C MO Rdz +2 xd 2 a 0 ]
D U2 - (j-)xi)22

BODY BODY

From Section 3.1.2,

IM~ dz -Im JT+ (2+a-) ~ (s.. y + (2+a) a y
BODY o CAV CAV

The closure condition for this cavity model requires that dy a 0.

BODY + CAV

By using these results, one obtains

CD - 2.,rm JT -4+7 y d

CAV 4OD s

since x a y/a on the wedge. Finally, it is easily shown that the

last two contour integrals in the above are zero; hence, with the

value of JT given in Appendix B,

cD = H . (G-13)

Second, the lift coefficient CL is defined in Table 4 an

C. = L =.
L PU2(CEORD)B vO P

From Equation (G-Il),

CL a 2 (i f xd. - fxdx - (2 + a) -dx.
1 BODY

After one perform the indicated integrations and notes that

Re(v/U)dz - (u/U)dx on the slit, the above equation become

C L -2( )- (2+a) Re 0 - ds.

BODY
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The results of Section 3.1.2 show that

eo d i, UL \. In ( + ji 3  -2((-1)J
BODY 00

Thus,

C L= 2 [l(2a1[1+ T I+

Third, the moment coefficient about the nose of the wedge is

defined in Table 4 as

L-(dist. to L) Cx .

00 (HQD) 2  BODY

To the first order,

CMO = 2 fx dx Ofx dx) - (2+a) 0u xdic.

0 1 BODY
Following simplification and introduction of complex notation, this

equation becomes

C- (2+cr) Re wzds.CMO 3=0

BODY
In Section 3.1.2, it is shown that

Re 0wadz n O([71(21+1) 1+ 4Tnir+r- r2)M (± T) 1-T
BODYLI (T2-1) (1-T) L

Thus,

+ (1T) -2( l) (a-l5)
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Finally, it remains to define the gravitation parameter g/U.. On

the basis of the analogy between the linearized rotational and gravity

problems, this definition is taken directly from equation (3.23) of

Section 3.1.2; hence,

By introducing equation (G-6) and the froude Number F into this result,

one has

a(13/2 . (G-16)

The complete solution is sinmarized in Table 9.

Certain results of the gravity flow analysis are the same as

those previously obtained in the study of uniform shear flow past a

wedge. These duplicated results include the cavity length-cavitation

number relationship, the cavity area, and the drag coefficient - all

of which are independent of gravity effects. Figures 7 and 8 show
the drag coefficient CD and cavity area Ac  as functions of a. The

1-c relationship is plotted in Figures 16 and 17; the curve for gravity

flow is the same as that for irrotational gravity-free flow. i.e., the
curve labelled e/U = 0. As in the gravity-free case, the cavity length
is limited in this linearized theory so

It is possible, however, that as a - (a * 0), the effects of gravity
may be exaggerated. Finally, since 1/6 is equal in gnitude to

(j/%)F2 , Figure 9 gives a plot of both paramters.
The remainder of the numerical results are listed in Appendix F

and illustrated in Figures 32 through 37. Figures 32 through 35
picture the pressure force coefficients. The first two figures show

the effect of cavitation numer on CL and CM in a gravity Xleld.

Note that both coefficients are linear functions of 1/. Hence,

independent of a, both coefficients are inverse functions of the
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square of the Froude number. As o approaches zero, the lift and

moment become negatively infinite for all finite Froude numbers. The

limitations of the theory are seen clearly in Figures 34 and 35, which

show the pressure coefficient. When the Froude number is small, the

gravity effects are large and the pressure coefficient on the lower

side of the wedge is negative over the whole body surface. Such a

condition (one in which the pressure on the body is always less than

the pressure in the cavity) is contradictory. However, as in the case

of uniform shear flow past a wedge, it seems permissible to allow

a negative pressure in the immediate vicinity of the nose of the wedge

for the reasons presented in Section 3.1.3. Thus, in Figure 35

for example, the curve of C vs x for F2 = 16 is a reasonable

approximation, while when F = 4 it is seen that the limits of the

theory have been exceeded. This behavior corresponds to that found by

Parkin [4) in his study of gravity effects on hydrofoils. In the

present case, the behavior is due to the increased size of the gravity

effects, represented by g/U, for small Froude numbers. Since this

theory was expected to hold only for flows with small gravity effects,

its use must be restricted accordingly. The behavior of C acts,p
then, as a guide to the limits of the theory.

The final figures, Figures 36 and 37, show the effect of Froude

number on cavity shape and the effect of cavitation number on the

location of the center of lift at an arbitrary Froude number (since

CM0/CL is not a function of F). The cavity shape is seen to be

distorted downward in the middle and upward at the end. The effect

of the transverse gravity field is exactly opposite to the effect of

a uniform shear flow with positive vorticity (see page 38 and Figure

10). The fact that the cavity is not inclined upward by bouyacy is

no longer surprising since the same result was predicted by Parkin' a

analysis and has been confirmed by experiments on cavitation behind

two-dimensional bluff bodies at the California Institute of Technology

[2 ).
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TABLE 1. BOUNDARY VALUE PROBLEMS FOR COMPLEX PERTURBATION VELOCITY

Wedge Hydro foil

B.C.

a. "w +, 1 < x <, a. Re(w) - +, 0 < <',

2 2 -

y -. 0+ y 0+

b. Re(w) U-. , 1 < 1 <f, b. Re(w) -< , I <x<.,
2 2

y " 0" y -'0O

c. Im(w) - .aUl , 0 < x < c. Nose

d. Im(w) = a., 0 < x < 1,d. In(w) • "Qtlc, 0 < x < 1

y 0 y -6 O"

e. The cavity is closed, i.e., the net source stremgth on the slit is zero.

f. w(s) - 0 as a - 0, i.e., (u,v) a 0 at infinity.

g. w(s) must not contain nonintegrable singularities on the slit or have
multiple values off the alit.

h. The flow is characterized by a smooth separation from the rear of the body,
i.e., w < 0 at x a 1, y 0.

TABLE 2. TRANSFORMATIONS

Wedge Hydrofoil

t = k2  z (Mobius) t =

Q a t% k(..) (Square root) Q a 01 k

2Q -+J.. (Joukosky) 2Q + I (+1)
2

k -VTr-.I
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U 0

a*- pq U
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TABLE 4. PRESSURE FORCE COEFFICIENTS

Coefficient Wedge Hydrofoil

1. Cp a P'c_ (24 )/: : '  +'- . _ (2+7-)/_ x + I- .
1 pU42 Fe 2 U0 UM Um
2

I
2. CN  N fC pdx

I pU.2 (CHORD) o
2

3. CD- D *i Sdy a.CN

2

4. CL- L Cpdx CN
I pU.2 (OMOR) W
2

s. -CAO- L) S1 x dz f C Px dx
I ge (CHORD) 2  W 0
2

Based on first-order smallness of angle of artack 0.

Takes at leading edge of body; positive in the counter-clockwise direction.
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TABLE 6. SUMMARY OF RESULTS FOR ASYMMETRIC WEDGE FLOW.

Quantity Equation No.

Cavi ty a E (3.8)
Length 2+7 T 4 1 T Vi'
Cavity .a /

Area Ac  - 1) (3.11b)

Cavity (See equations 3.13 a, b, and c) (3.13)
Shape

Pressure
Coefficient cPu (2+) (2+1) +ts 11

upper +- e + 2(1T tee.,ED (V.Z+lT)+,,] (3.16)
Surfce w Tr(I+tT)

o< 0 < w/2

Lower
Surfece CpL -(2 +1) (2 +1 .sn a I + sin

+" + + 2 (1-T ) te a  to+T (VT + 'V )31 (3.16)

w(l+T) (.6

7F/2 < L9 < 77

X C o 2 6 (3.15)
-t- sin2 9

Drag
Coefficient % *(2 2)2 ov{/T("- 1) (3.16)

Li ft CL (2+1) + 4 (4+vWT) +.l. (3.20)
Coefficient LT 2 .1

Moment
Coefficient

(T:-l)(l-T+ 1" 3+I T I ) 1  (3.22)

Vorticity 3/
Parameter ap U- .L -1) (3.23)

NGFE: T= 1 -+2 I D.
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TABLE 7. SUMMARY OF RESULTS FOR SYMMETRIC WEDGE FLOW

Quantity Equation No.

Cavity [a1 + (.)
Legh t - 1) a . -Lt+1 . (3.26)

Cavity AC = cL(t 3/2 (3.28b)
Area

Cavity Yc = a &( - - 4(-,-1) tan 1 L(L4-1) d. t>l (3.29a)

Shape 7T tan Z ( 2+T)2(q2+R )2  -

x - t1 - 4(4-)t 2 / (t 2 +T)(t 2 +R)] (3.13c)

Pressure Cp (2 +a)) x- I) + S2 ( .2 +a) in + 1+stin 0I)

Coefficient Us 
1i

o < < i/2 (3.32)

x C 0 €on2 L9 (i* sin 2 9) (3.31)

Drag

Coefficient C1)" (2+)2 /T( .l) (3.33)

Vorticity e C" ( t I 3/ 2 "1) (3.34)

Parameter u. Um, 2(t-1)

NOTE: T - l- + 2 v ; R -1.2 /-lvI).
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TABLE 9. SUMMARY OF RESULTS FOR WEDGE FLOW IN TRANSVERSE GRAVITY FIELD

Quantity Equation No.

Cavty a (e 4 At + 2A(G-5)Length +a _7 q -l. 1

Cavity Ac  0 ,(t 3/ 2 . 1) (G-6)
Area

Cavity (See equations G-7, 8. and 9)

Shape

Pressure + (-SA x + ((2o+a) ( sin a + '+s±Iin
Coefficient CU U 7 o I-sin 0

Upper

Surface jL [6 + 2 (~f 1 - ($Vf+4VT ) ta (G91)
uM,7 17(1+T)

0 <6 _9< 7T/2

Lower +2 + 2 (.A.. (24a) .e
Surface C-P1  

2  , 2viL 2o,- 7r 1-aim

ue

+{ 2.1 T 4C (/q+V/IT) tam 19])UIIT 7(l+T) L

r/2 < 6 < 7

x t-siS
2 9

Drag (G-13)
Coefficient Ii " (240)2 cf/.? ')

Li ft (G142 (21a (Vr E' )[+-A- A + t
Coefficient CL Um T2 _1 T--I (*),$(C-) +-!~~(-4

moment Iu[(ir~,~~l +~1 [ T +3LL~~i

Coef~f~icie 0 +3 2'' (T21)(1.T)'0-..' a [ (+T ,+ , [,~ .2(t2,1))]

Gravity 2t.1.)] f(G-16)
Parameter J c - (t3/ 2 1)/2F 2 (t-)

Us,

NOTE: T - 1I +
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